a) Construct a linear model that predicts SAT math scores in terms of a students HS GPA. (b) Assess whether or not your model is useful to an α = 0.05 level of signifificance, and also test your coeffiffifficient β1 parameter to that same signifificance level. (c) Construct a second linear model that uses HS GPA, and HS Math exam scores as indpendent variables to predict SATM. Perform a test for model utility on this model.
Inverse Normal Distribution
The method used for finding the corresponding z-critical value in a normal distribution using the known probability is said to be an inverse normal distribution. The inverse normal distribution is a continuous probability distribution with a family of two parameters.
Mean, Median, Mode
It is a descriptive summary of a data set. It can be defined by using some of the measures. The central tendencies do not provide information regarding individual data from the dataset. However, they give a summary of the data set. The central tendency or measure of central tendency is a central or typical value for a probability distribution.
Z-Scores
A z-score is a unit of measurement used in statistics to describe the position of a raw score in terms of its distance from the mean, measured with reference to standard deviation from the mean. Z-scores are useful in statistics because they allow comparison between two scores that belong to different normal distributions.
obs | GPA | HSM | HSS | HSE | SATM | SATCR | SATW | sex |
1 | 3.84 | 10 | 10 | 10 | 630 | 570 | 590 | 2 |
2 | 3.97 | 10 | 10 | 10 | 750 | 700 | 630 | 1 |
3 | 3.49 | 8 | 10 | 9 | 570 | 510 | 490 | 2 |
4 | 1.95 | 6 | 4 | 8 | 640 | 600 | 610 | 1 |
5 | 2.59 | 8 | 10 | 9 | 510 | 490 | 490 | 2 |
6 | 3 | 7 | 10 | 10 | 660 | 680 | 630 | 1 |
7 | 1.78 | 9 | 9 | 9 | 630 | 490 | 510 | 1 |
8 | 2.41 | 6 | 6 | 7 | 670 | 620 | 610 | 1 |
9 | 2.83 | 9 | 8 | 10 | 550 | 570 | 540 | 2 |
10 | 0.6 | 7 | 7 | 9 | 640 | 720 | 630 | 1 |
11 | 3.98 | 10 | 10 | 10 | 630 | 560 | 540 | 2 |
12 | 1.52 | 8 | 8 | 7 | 650 | 550 | 460 | 1 |
13 | 2.82 | 10 | 10 | 9 | 610 | 540 | 490 | 2 |
14 | 3.09 | 10 | 10 | 10 | 670 | 330 | 540 | 1 |
15 | 3.79 | 9 | 10 | 10 | 550 | 580 | 560 | 2 |
16 | 3.2 | 9 | 10 | 9 | 580 | 490 | 420 | 2 |
17 | 3.62 | 10 | 10 | 10 | 720 | 620 | 570 | 1 |
18 | 1.74 | 10 | 9 | 6 | 780 | 540 | 620 | 1 |
19 | 2.02 | 7 | 5 | 6 | 660 | 520 | 600 | 1 |
20 | 2.29 | 10 | 10 | 10 | 690 | 750 | 680 | 1 |
21 | 3.13 | 10 | 10 | 9 | 660 | 620 | 590 | 2 |
22 | 2.96 | 8 | 9 | 6 | 660 | 670 | 750 | 1 |
23 | 4 | 10 | 10 | 10 | 640 | 620 | 620 | 2 |
24 | 2.89 | 8 | 7 | 8 | 620 | 610 | 570 | 1 |
25 | 3.95 | 10 | 10 | 10 | 770 | 780 | 760 | 1 |
26 | 1.71 | 10 | 10 | 8 | 800 | 750 | 650 | 1 |
27 | 3.23 | 8 | 8 | 8 | 650 | 590 | 480 | 1 |
28 | 2.07 | 8 | 8 | 8 | 570 | 560 | 560 | 1 |
29 | 1.29 | 2 | 6 | 8 | 480 | 490 | 650 | 2 |
30 | 4 | 10 | 10 | 10 | 630 | 630 | 620 | 2 |
31 | 2.94 | 9 | 10 | 10 | 490 | 510 | 490 | 1 |
32 | 3.89 | 10 | 10 | 10 | 680 | 730 | 740 | 1 |
33 | 3.34 | 7 | 7 | 6 | 700 | 420 | 460 | 1 |
34 | 3.52 | 9 | 10 | 8 | 740 | 740 | 620 | 1 |
35 | 3.75 | 10 | 10 | 10 | 650 | 690 | 670 | 1 |
36 | 3.55 | 6 | 7 | 5 | 630 | 420 | 400 | 1 |
37 | 3.46 | 8 | 9 | 9 | 590 | 600 | 560 | 2 |
38 | 2.02 | 7 | 9 | 8 | 690 | 690 | 640 | 1 |
39 | 1.56 | 8 | 5 | 6 | 650 | 600 | 510 | 1 |
40 | 3.97 | 10 | 10 | 10 | 730 | 660 | 660 | 1 |
41 | 1.36 | 8 | 10 | 10 | 590 | 560 | 510 | 1 |
42 | 4 | 10 | 10 | 10 | 630 | 580 | 490 | 1 |
43 | 3.31 | 10 | 10 | 9 | 600 | 570 | 510 | 1 |
44 | 2.28 | 8 | 9 | 8 | 590 | 400 | 480 | 1 |
45 | 3.65 | 8 | 9 | 9 | 680 | 650 | 650 | 1 |
46 | 2.34 | 10 | 10 | 9 | 660 | 530 | 610 | 1 |
47 | 2.06 | 8 | 9 | 9 | 650 | 550 | 570 | 2 |
48 | 3.25 | 9 | 7 | 8 | 640 | 540 | 540 | 1 |
49 | 3.45 | 10 | 10 | 10 | 600 | 570 | 530 | 1 |
50 | 2.31 | 9 | 7 | 7 | 580 | 530 | 510 | 1 |
51 | 4 | 10 | 10 | 9 | 630 | 570 | 630 | 1 |
52 | 2.5 | 10 | 9 | 7 | 620 | 550 | 430 | 1 |
53 | 3.08 | 8 | 8 | 8 | 620 | 560 | 490 | 2 |
54 | 3.38 | 10 | 9 | 10 | 670 | 690 | 550 | 1 |
55 | 2.69 | 8 | 6 | 6 | 550 | 510 | 460 | 1 |
56 | 3.64 | 9 | 9 | 9 | 600 | 590 | 590 | 2 |
57 | 3.26 | 10 | 10 | 10 | 510 | 450 | 470 | 2 |
58 | 1.49 | 8 | 9 | 9 | 500 | 540 | 530 | 2 |
59 | 2.93 | 8 | 4 | 4 | 550 | 480 | 470 | 1 |
60 | 2.92 | 7 | 9 | 8 | 740 | 600 | 640 | 1 |
61 | 3.99 | 10 | 10 | 10 | 750 | 610 | 640 | 1 |
62 | 3.27 | 8 | 10 | 9 | 480 | 450 | 560 | 2 |
63 | 3.05 | 9 | 9 | 10 | 700 | 560 | 550 | 1 |
64 | 3.36 | 8 | 10 | 9 | 520 | 490 | 470 | 2 |
65 | 0.03 | 5 | 7 | 8 | 460 | 450 | 500 | 1 |
66 | 2.57 | 7 | 9 | 8 | 520 | 550 | 570 | 2 |
67 | 3.33 | 7 | 8 | 7 | 610 | 450 | 480 | 2 |
68 | 3.06 | 8 | 9 | 10 | 630 | 560 | 650 | 2 |
69 | 2.39 | 6 | 8 | 9 | 620 | 530 | 480 | 1 |
70 | 2.21 | 8 | 10 | 10 | 500 | 510 | 590 | 2 |
71 | 2.99 | 10 | 10 | 10 | 580 | 480 | 530 | 2 |
72 | 4 | 10 | 10 | 10 | 760 | 650 | 630 | 1 |
73 | 1.2 | 8 | 7 | 7 | 520 | 480 | 560 | 1 |
74 | 3.28 | 9 | 10 | 9 | 610 | 540 | 460 | 1 |
75 | 3.87 | 10 | 10 | 10 | 690 | 580 | 570 | 1 |
76 | 2.52 | 8 | 8 | 8 | 510 | 480 | 460 | 2 |
77 | 3.32 | 9 | 9 | 9 | 580 | 490 | 480 | 1 |
78 | 1.02 | 9 | 9 | 7 | 560 | 560 | 560 | 2 |
79 | 2.91 | 6 | 9 | 10 | 580 | 700 | 640 | 2 |
80 | 2.14 | 10 | 10 | 10 | 700 | 650 | 640 | 1 |
81 | 2.5 | 10 | 10 | 10 | 520 | 480 | 440 | 1 |
82 | 3.36 | 10 | 9 | 10 | 640 | 580 | 630 | 1 |
83 | 3.51 | 7 | 9 | 8 | 650 | 640 | 640 | 1 |
84 | 2.36 | 6 | 5 | 8 | 540 | 520 | 520 | 2 |
85 | 1.87 | 6 | 7 | 8 | 700 | 580 | 560 | 1 |
86 | 3.45 | 10 | 10 | 10 | 770 | 760 | 730 | 1 |
87 | 2.96 | 8 | 7 | 9 | 500 | 540 | 610 | 2 |
88 | 3.24 | 6 | 7 | 8 | 660 | 640 | 610 | 2 |
89 | 3.32 | 9 | 9 | 10 | 730 | 640 | 670 | 1 |
90 | 3.71 | 10 | 10 | 10 | 710 | 760 | 660 | 2 |
91 | 3.18 | 9 | 10 | 10 | 620 | 620 | 550 | 2 |
92 | 3.59 | 10 | 9 | 10 | 690 | 580 | 560 | 1 |
93 | 2.93 | 8 | 9 | 9 | 490 | 530 | 550 | 2 |
94 | 3.93 | 9 | 10 | 10 | 690 | 740 | 670 | 2 |
95 | 1.41 | 8 | 8 | 9 | 690 | 410 | 460 | 1 |
96 | 1.9 | 6 | 7 | 7 | 540 | 720 | 650 | 1 |
97 | 3.45 | 10 | 10 | 9 | 640 | 670 | 600 | 2 |
98 | 3.06 | 9 | 10 | 9 | 590 | 450 | 460 | 1 |
99 | 1.85 | 8 | 8 | 8 | 570 | 520 | 520 | 1 |
100 | 3.13 | 9 | 10 | 10 | 550 | 530 | 520 | 1 |
101 | 1.81 | 7 | 7 | 7 | 550 | 510 | 490 | 1 |
102 | 2.38 | 9 | 6 | 8 | 640 | 580 | 640 | 2 |
103 | 2.45 | 9 | 10 | 9 | 720 | 670 | 700 | 1 |
104 | 3.19 | 6 | 7 | 8 | 540 | 510 | 490 | 2 |
105 | 2.23 | 7 | 7 | 8 | 690 | 620 | 570 | 1 |
106 | 1.83 | 5 | 7 | 10 | 560 | 550 | 560 | 2 |
107 | 3.38 | 7 | 8 | 9 | 630 | 640 | 530 | 2 |
108 | 3.43 | 9 | 8 | 9 | 670 | 600 | 590 | 1 |
109 | 2.74 | 9 | 7 | 7 | 780 | 610 | 680 | 1 |
110 | 4 | 10 | 10 | 10 | 710 | 600 | 630 | 2 |
111 | 2.93 | 8 | 8 | 10 | 610 | 480 | 440 | 1 |
112 | 1.68 | 7 | 8 | 8 | 650 | 530 | 450 | 1 |
113 | 3.71 | 9 | 10 | 9 | 620 | 500 | 520 | 2 |
114 | 1.72 | 7 | 8 | 9 | 530 | 610 | 540 | 2 |
115 | 1.63 | 10 | 9 | 9 | 540 | 600 | 560 | 2 |
116 | 0.85 | 10 | 9 | 9 | 560 | 520 | 470 | 1 |
117 | 2.94 | 8 | 10 | 10 | 630 | 700 | 580 | 1 |
118 | 3.37 | 10 | 9 | 9 | 560 | 460 | 480 | 1 |
119 | 3.15 | 8 | 8 | 7 | 690 | 670 | 670 | 1 |
120 | 2.96 | 10 | 10 | 10 | 550 | 560 | 490 | 2 |
121 | 3.48 | 9 | 9 | 9 | 710 | 660 | 610 | 2 |
122 | 2.05 | 10 | 10 | 10 | 670 | 550 | 620 | 2 |
123 | 1.66 | 10 | 9 | 10 | 580 | 480 | 470 | 2 |
124 | 3.12 | 10 | 9 | 9 | 530 | 480 | 480 | 2 |
125 | 2.78 | 9 | 9 | 8 | 520 | 490 | 520 | 2 |
126 | 3.33 | 10 | 9 | 10 | 650 | 580 | 480 | 2 |
127 | 2.57 | 6 | 7 | 7 | 560 | 550 | 540 | 1 |
128 | 3.1 | 8 | 9 | 9 | 710 | 600 | 730 | 1 |
129 | 2.3 | 8 | 9 | 10 | 630 | 540 | 500 | 1 |
130 | 2.74 | 10 | 10 | 8 | 570 | 450 | 590 | 1 |
131 | 2.19 | 10 | 10 | 10 | 700 | 530 | 560 | 1 |
132 | 3.36 | 10 | 10 | 10 | 690 | 580 | 570 | 2 |
133 | 3.03 | 10 | 10 | 10 | 630 | 540 | 580 | 2 |
134 | 3.49 | 8 | 9 | 8 | 600 | 660 | 620 | 2 |
135 | 3.88 | 10 | 10 | 10 | 740 | 640 | 690 | 1 |
136 | 2.71 | 9 | 8 | 9 | 510 | 430 | 500 | 2 |
137 | 2.55 | 10 | 10 | 10 | 720 | 800 | 670 | 1 |
138 | 2.82 | 8 | 8 | 9 | 610 | 550 | 590 | 2 |
139 | 3.65 | 10 | 9 | 10 | 620 | 530 | 520 | 1 |
140 | 3.75 | 10 | 10 | 10 | 770 | 730 | 770 | 1 |
141 | 2.59 | 6 | 8 | 9 | 590 | 650 | 630 | 1 |
142 | 1.99 | 9 | 9 | 9 | 540 | 500 | 480 | 2 |
143 | 2.57 | 6 | 7 | 6 | 580 | 520 | 560 | 1 |
144 | 3.99 | 9 | 9 | 10 | 680 | 650 | 590 | 1 |
145 | 2.31 | 10 | 9 | 10 | 590 | 660 | 480 | 1 |
146 | 2.75 | 9 | 10 | 9 | 580 | 590 | 520 | 1 |
147 | 1.72 | 8 | 7 | 7 | 520 | 400 | 430 | 2 |
148 | 3.73 | 9 | 10 | 10 | 630 | 630 | 620 | 2 |
149 | 3.62 | 10 | 10 | 8 | 640 | 560 | 540 | 1 |
150 | 3.23 | 10 | 10 | 10 | 640 | 510 | 350 | 1 |
(a) Construct a linear model that predicts SAT math scores in terms of a students HS GPA.
(b) Assess whether or not your model is useful to an α = 0.05 level of signifificance, and also test your
coeffiffifficient β1 parameter to that same signifificance level.
(c) Construct a second linear model that uses HS GPA, and HS Math exam scores as indpendent
variables to predict SATM. Perform a test for model utility on this model.
(d) How much of the variability is explained in the fifirst model? How much in the second?
(e) Perform a hypothesis test to assess whether or not your second model should be used over your
fifirst model.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps