A certain half-reaction has a standard reduction potential E=+0.21 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.30 V of electrical power. The cell will operate under standard conditions. nla Data Note for advanced students: assume the engineer requires this half-reaction to happen at t Half-Reaction E° (V) Ag+ (aq) + e → Ag (s) Al3+ (aq) + 3e-- Al (s) 0.7996 -1.676 Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? yes, there is a minimum. E = Ov red Au+ (aq) + e - Au (s) 1.692 Au3+ (aq) + 3e - Au (s) Ba2+ (aq) + 2e - Ba (s) 1.498 If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box. -2.912 O no minimum Br2 (1) + 2e- + 2Br (aq) 1.066 Ca2+ (aq) + 2e- - Ca (s) -2.868 Cl2 (9) + 2e- 2CI- (aq) 1.35827 Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? = Ov red O yes, there is a maximum. Co2+ (aq) + 2e-- Co (s) -0.28 !! Co3+ (aq) + e- - Co2+ (aq) 1.92 If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. Cr2+ (aq) + 2e- Cr (s) Cr3+ (ag) + 3e Cr (s) -0.913 O no maximum -0.744 Cr+ (aq) + e- - Cr2+ (aq) --0.407 Cro42- (aq) + 4H20 (1) + 3e - Cr(OH)3 (s) + 50H (aq) -0.13 Cu2+ (aq) + 2e - Cu (s) 0.3419 By using the information in the ALEKS Data tab, write a balanced equation describing a half reaction that could be used at the cathode of this cell. Cu2+ (aq) + e Cut (aq) Cut (aq) + e - Cu (s) 0.153 0.521 Note: write the half reaction as it would F2 (9) + 2e - 2F (aq) 2.866 actually occur at the cathode. Fe2+ (aq) + 2e - Fe (s) -0.447 Fe+ (aq) + e - Fe2+ (aq) 0.771
A certain half-reaction has a standard reduction potential E=+0.21 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.30 V of electrical power. The cell will operate under standard conditions. nla Data Note for advanced students: assume the engineer requires this half-reaction to happen at t Half-Reaction E° (V) Ag+ (aq) + e → Ag (s) Al3+ (aq) + 3e-- Al (s) 0.7996 -1.676 Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? yes, there is a minimum. E = Ov red Au+ (aq) + e - Au (s) 1.692 Au3+ (aq) + 3e - Au (s) Ba2+ (aq) + 2e - Ba (s) 1.498 If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box. -2.912 O no minimum Br2 (1) + 2e- + 2Br (aq) 1.066 Ca2+ (aq) + 2e- - Ca (s) -2.868 Cl2 (9) + 2e- 2CI- (aq) 1.35827 Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? = Ov red O yes, there is a maximum. Co2+ (aq) + 2e-- Co (s) -0.28 !! Co3+ (aq) + e- - Co2+ (aq) 1.92 If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. Cr2+ (aq) + 2e- Cr (s) Cr3+ (ag) + 3e Cr (s) -0.913 O no maximum -0.744 Cr+ (aq) + e- - Cr2+ (aq) --0.407 Cro42- (aq) + 4H20 (1) + 3e - Cr(OH)3 (s) + 50H (aq) -0.13 Cu2+ (aq) + 2e - Cu (s) 0.3419 By using the information in the ALEKS Data tab, write a balanced equation describing a half reaction that could be used at the cathode of this cell. Cu2+ (aq) + e Cut (aq) Cut (aq) + e - Cu (s) 0.153 0.521 Note: write the half reaction as it would F2 (9) + 2e - 2F (aq) 2.866 actually occur at the cathode. Fe2+ (aq) + 2e - Fe (s) -0.447 Fe+ (aq) + e - Fe2+ (aq) 0.771
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY