A certain half-reaction has a standard reduction potential Ed=+1.14 V. An engineer proposes using this half-reaction at the cathode of a galvanic cell that must provide at least 0.60 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to ha h Data Half-Reaction 0. Ag+ (aq) + e Ag (s) Al3+ (aq) + 3e- - Al (s) -1. Is there a minimum standard reduction potential that the half-reaction used at the anode of this cell can have? E red = v !3D O yes, there is a minimum. 1. Au+ (aq) + e - Au (s) Au3+ (aq) + 3e Au (s) 1. If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box. -2. Ba2+ (aq) + 2e- Ba (s) O no minimum 1. Br2 (1) + 2e → 2Br (aq) -2.8 Ca2+ (aq) + 2e Ca (s) 1.3 Cl2 (g) + 2e 2C1 (aq) Is there a maximum standard reduction potential that the half-reaction used at the anode of this cell can have? E red = Ov Co2+ (aq) + 2e - Co (s) -0.2 O yes, there is a maximum. 1.9 Co3+ (aq) + e- Co2+ (aq) Cr2+ (aq) + 2e- Cr (s) -0.9 If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. --0.75 O no maximum Cr3+ (aq) + 3e Cr (s) -0.40

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
A certain half-reaction has a standard reduction potential E=+1.14 V. An engineer proposes using this half-reaction at the cathode of a galvanic cell that
red
must provide at least 0.60 V of electrical power. The cell will operate under standard conditions.
Note for advanced students: assume the engineer requires this half-reaction to ha . Data
Half-Reaction
E° (V)
Ag+ (aq) + e- Ag (s)
0.7996
Is there a minimum standard reduction
potential that the half-reaction used at
the anode of this cell can have?
O yes, there is a minimum.
%3D
red
= Iv
Al3+ (aq) + 3e- → Al (s)
-1.676
Au+ (ag) + e Au (s)
1.692
If so, check the "yes" box and calculate
the minimum. Round your answer to 2
decimal places. If there is no lower
limit, check the "no" box.
Au3+ (aq) + 3e-- Au (s)
1.498
O no minimum
Ba2+ (aq) + 2e - Ba (s)
-2.912
Br2 (1) + 2e- → 2Br (ag)
1.066
Ca2+ (ag) + 2e Ca (s)
-2.868
Cl2 (g) + 2e → 2CI- (aq)
1.35827
Is there a maximum standard reduction
potential that the half-reaction used at
the anode of this cell can have?
O yes, there is a maximum.
Ered
= I v
!!
Co2+ (aq) + 2e- → Co (s)
Co3+ (aq) + e→ Co2+ (aq)
-0.28
1.92
If so, check the "yes" box and calculate
the maximum. Round your answer to 2
decimal places. If there is no upper
limit, check the "no" box.
--0.913
Cr2+ (aq) + 2e- → Cr (s)
Cr3+ (aq) + 3e- Cr (s)
Cr+ (aq) + e- + Cr2+ (aq)
O no maximum
-0.744
-0.407
--0.13
Cro42- (aq) + 4H20 (1) + 3e- -
Cr(OH)3 (s) + 50H- (aq)
By using the information in the ALEKS
Data tab, write a balanced equation
describing a half reaction that could be
used at the anode of this cell.
Cu2+ (aq) + 2e+ Cu (s)
0.3419
Cu2+ (ag) + e- Cu+ (aq)
0.153
0.521
Cu+ (aq) + e → Cu (s)
Note: write the half reaction as it would
actually occur at the anode.
2.866
F2 (g) + 2e - 2F (aq)
- Fe (s)
-0.447
Fe2+ (aq) + 2e -
0.771
Fe3+ (ag) + e - Fe2+ (aq)
Explanation
Check
Fe3+ (aq) + 3e - Fe (s)
-0.037
MacBook Air
F10
FB
吕口 F3
D00 F4
F6
F7
F5
F2
Transcribed Image Text:A certain half-reaction has a standard reduction potential E=+1.14 V. An engineer proposes using this half-reaction at the cathode of a galvanic cell that red must provide at least 0.60 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to ha . Data Half-Reaction E° (V) Ag+ (aq) + e- Ag (s) 0.7996 Is there a minimum standard reduction potential that the half-reaction used at the anode of this cell can have? O yes, there is a minimum. %3D red = Iv Al3+ (aq) + 3e- → Al (s) -1.676 Au+ (ag) + e Au (s) 1.692 If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box. Au3+ (aq) + 3e-- Au (s) 1.498 O no minimum Ba2+ (aq) + 2e - Ba (s) -2.912 Br2 (1) + 2e- → 2Br (ag) 1.066 Ca2+ (ag) + 2e Ca (s) -2.868 Cl2 (g) + 2e → 2CI- (aq) 1.35827 Is there a maximum standard reduction potential that the half-reaction used at the anode of this cell can have? O yes, there is a maximum. Ered = I v !! Co2+ (aq) + 2e- → Co (s) Co3+ (aq) + e→ Co2+ (aq) -0.28 1.92 If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. --0.913 Cr2+ (aq) + 2e- → Cr (s) Cr3+ (aq) + 3e- Cr (s) Cr+ (aq) + e- + Cr2+ (aq) O no maximum -0.744 -0.407 --0.13 Cro42- (aq) + 4H20 (1) + 3e- - Cr(OH)3 (s) + 50H- (aq) By using the information in the ALEKS Data tab, write a balanced equation describing a half reaction that could be used at the anode of this cell. Cu2+ (aq) + 2e+ Cu (s) 0.3419 Cu2+ (ag) + e- Cu+ (aq) 0.153 0.521 Cu+ (aq) + e → Cu (s) Note: write the half reaction as it would actually occur at the anode. 2.866 F2 (g) + 2e - 2F (aq) - Fe (s) -0.447 Fe2+ (aq) + 2e - 0.771 Fe3+ (ag) + e - Fe2+ (aq) Explanation Check Fe3+ (aq) + 3e - Fe (s) -0.037 MacBook Air F10 FB 吕口 F3 D00 F4 F6 F7 F5 F2
2H (aq) + 2e H2 (g)
000 0
2H20 (1) + 2e - H2 (g) + 20H (aq)
-0.8277
H202 (aq) + 2H+ (aq) + 2e 2H20 (1)
1.776
I2 (s) + 2e 21- (aq)
0.5355
2103 (aq) + 12H (aq) + 10e I2 (s) + 6H20 (I)
1.195
Mg2+ (aq) + 2e
-2.372
(s) MW
(aq) + 2e → Mn (s)
Mn2+
-1.185
MnO2 (s) + 4H+ (aq) + 2e → Mn2+ (aq) + 2H2O (I)
1.224
Mn04 (aq) + 8H+ (aq) + 5e Mn2+ (aq) + 4H2O (1)
1.507
MnO4 (aq) + 2H20 (1) + 3e MnO2 (s) + 40H¯ (aq)
0.595
HNO2 (aq) + H (aq) + e¯ → NO (g) + H2O (1)
0.983
N2 (g) +4H20 (1) + 4e¯ → 4OH (aq) + N2H4 (aq)
-1.16
NO3 (aq) + 4H (aq) + 3e → NO (g) + 2H2O (I)
0.957
Na+ (aq) + e → Na (s)
-2.71
Ni2+ (aq) + 2e → Ni (s)
-0.257
02 (g) + 4H+ (aq) + 4e¯ → 2H2O (I)
1.229
02 (g) + 2H20 (1) + 4e¯ → 40H¯ (aq)
0.401
02 (9) + 2H+ (aq) + 2e → H2O2 (aq)
Pb2+ (aq) + 2e Pb (s)
-0.1262
PbSO4 (s) + H* (aq) + 2e¯ - Pb (s) + HSO4¯ (aq)
-0.3588
HSO4 (aq) + 3H (aq) + 2e H2SO3 (aq) + H2O (1)
0.172
Book Air
F12
ULJ
LL
Transcribed Image Text:2H (aq) + 2e H2 (g) 000 0 2H20 (1) + 2e - H2 (g) + 20H (aq) -0.8277 H202 (aq) + 2H+ (aq) + 2e 2H20 (1) 1.776 I2 (s) + 2e 21- (aq) 0.5355 2103 (aq) + 12H (aq) + 10e I2 (s) + 6H20 (I) 1.195 Mg2+ (aq) + 2e -2.372 (s) MW (aq) + 2e → Mn (s) Mn2+ -1.185 MnO2 (s) + 4H+ (aq) + 2e → Mn2+ (aq) + 2H2O (I) 1.224 Mn04 (aq) + 8H+ (aq) + 5e Mn2+ (aq) + 4H2O (1) 1.507 MnO4 (aq) + 2H20 (1) + 3e MnO2 (s) + 40H¯ (aq) 0.595 HNO2 (aq) + H (aq) + e¯ → NO (g) + H2O (1) 0.983 N2 (g) +4H20 (1) + 4e¯ → 4OH (aq) + N2H4 (aq) -1.16 NO3 (aq) + 4H (aq) + 3e → NO (g) + 2H2O (I) 0.957 Na+ (aq) + e → Na (s) -2.71 Ni2+ (aq) + 2e → Ni (s) -0.257 02 (g) + 4H+ (aq) + 4e¯ → 2H2O (I) 1.229 02 (g) + 2H20 (1) + 4e¯ → 40H¯ (aq) 0.401 02 (9) + 2H+ (aq) + 2e → H2O2 (aq) Pb2+ (aq) + 2e Pb (s) -0.1262 PbSO4 (s) + H* (aq) + 2e¯ - Pb (s) + HSO4¯ (aq) -0.3588 HSO4 (aq) + 3H (aq) + 2e H2SO3 (aq) + H2O (1) 0.172 Book Air F12 ULJ LL
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Electrolysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY