6. [10] Evaluate (2 (2+2y) ds where C is the upper half-circle centered at the origin connecting the point (2,0) to the point (-2,0). 7. [10] Show that the vector field F(x, y, z) =< 2 cos(2x+y) cos z, cos(2x + y) cos z, - sin(2x + y) sin z + 2 cos z> is conservative and integrate it along the curve П C(t) = si sin t, nt, cost,t), te [0,1] 8. [10] Use Stokes' Theorem to compute the integral curl F.dS, where F(x, y, z) = xzi+yxj+xy k I cur and S is the part of the sphere x² + y²+z² = 9 that lies inside the cylinder x2 + y² above the xy-plane. 9. [10] Use Green's theorem to evaluate So √1+x3 dx+2xy dy where C is the triangle with vertices (0,0), (1, 0) and (1, 3). 10. [10] Evaluate the surface integral (x²z + y²z) dS where S is the hemisphere x² + y²+2² = 4, z> 0. = 1 and ☐
6. [10] Evaluate (2 (2+2y) ds where C is the upper half-circle centered at the origin connecting the point (2,0) to the point (-2,0). 7. [10] Show that the vector field F(x, y, z) =< 2 cos(2x+y) cos z, cos(2x + y) cos z, - sin(2x + y) sin z + 2 cos z> is conservative and integrate it along the curve П C(t) = si sin t, nt, cost,t), te [0,1] 8. [10] Use Stokes' Theorem to compute the integral curl F.dS, where F(x, y, z) = xzi+yxj+xy k I cur and S is the part of the sphere x² + y²+z² = 9 that lies inside the cylinder x2 + y² above the xy-plane. 9. [10] Use Green's theorem to evaluate So √1+x3 dx+2xy dy where C is the triangle with vertices (0,0), (1, 0) and (1, 3). 10. [10] Evaluate the surface integral (x²z + y²z) dS where S is the hemisphere x² + y²+2² = 4, z> 0. = 1 and ☐
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter6: The Trigonometric Functions
Section6.6: Additional Trigonometric Graphs
Problem 78E
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 16 images
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage