Show that the vector-valued function shown below describes the function of a particle moving in a circle of radius 1 centered at a point (5,5,3) and lying in the plane 3x+3y-6z = 12

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

Show that the vector-valued function shown below describes the function of a particle moving in a circle of radius 1 centered at a point (5,5,3) and lying in the plane 3x+3y-6z = 12

r(t) = (5i + 5j + 3k) + cos t
'
1
1
√.
+ sin t
1
13
1
ਤਾਂ
1
Transcribed Image Text:r(t) = (5i + 5j + 3k) + cos t ' 1 1 √. + sin t 1 13 1 ਤਾਂ 1
Expert Solution
Step 1

Part - 1 :

Given vector-valued function is  

                                   rt = 5i +5j +3k + cos t 12i-12j+sin t13i+13j+13k 

                                          =5+cos t2+sin t3 i +5-cos t2+sin t3 j +3+sin t3 k

      From this the parametric Equations of the given Curve are:

                        xt = 5+cos t2+sin t3

                       yt = 5-cos t2+sin t3

                       zt = 3+sin t3

   Substitute these in the plane equation 3x+3y-6z = 12

                    3  5+cos t2+sin t3 + 3  5-cos t2+sin t3 - 6 3+sin t3 =12

            15+15-18 + 32-32 cos t +33+33-63 =12

            12 + 0 + 0 =12

            12 = 12

  So the given vector-valued function is lying in the plane 3x+3y-6z = 12 .

                                        

                     

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,