Problem 11 (Gram-Schmidt). Try the Gram-Schmidt procedure for the vectors, 1 0 2 with respect to the standard dot product on R4. What happens? Can you explain why you are unable to complete the algorithm? Problem 12 (Orthogonal Matrices Preserve Orthogonality). Suppose x, y = Rn" are orthogonal to each other with respect to some inner product (.,.) and that A is an orthogonal matrix and B is some invertible matrix. 1. Prove that Ax and Ay are also orthogonal to each other and that ||x|| = ||Ax|| and ||y|| : = ||Ay||. 2. Is it true that Bx and By are also orthogonal to each other and that ||x|| = ||Bx|| and ||y|| = = ||By||? Provide a proof or a counter-example. Problem 13 (Orthogonal Complement). Let W be the subspace of R5 spanned by, 1 2 2 4 u = 3 , v= 7 2 2 Find a basis of the orthogonal complement W- of W. Verify in this particular example that WW₁ = {0} and that dim(W) + dim(W¹) = 5.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter6: Vector Spaces
Section6.2: Linear Independence, Basis, And Dimension
Problem 3AEXP
icon
Related questions
Question
Problem 11 (Gram-Schmidt). Try the Gram-Schmidt procedure for the vectors,
1
0
2
with respect to the standard dot product on R4. What happens? Can you explain why you are unable to
complete the algorithm?
Problem 12 (Orthogonal Matrices Preserve Orthogonality). Suppose x, y = Rn" are orthogonal to each other
with respect to some inner product (.,.) and that A is an orthogonal matrix and B is some invertible matrix.
1. Prove that Ax and Ay are also orthogonal to each other and that ||x|| = ||Ax|| and ||y|| : = ||Ay||.
2. Is it true that Bx and By are also orthogonal to each other and that ||x|| = ||Bx|| and ||y|| = = ||By||?
Provide a proof or a counter-example.
Problem 13 (Orthogonal Complement). Let W be the subspace of R5 spanned by,
1
2
2
4
u =
3
, v=
7
2
2
Find a basis of the orthogonal complement W- of W. Verify in this particular example that WW₁ = {0}
and that dim(W) + dim(W¹) = 5.
Transcribed Image Text:Problem 11 (Gram-Schmidt). Try the Gram-Schmidt procedure for the vectors, 1 0 2 with respect to the standard dot product on R4. What happens? Can you explain why you are unable to complete the algorithm? Problem 12 (Orthogonal Matrices Preserve Orthogonality). Suppose x, y = Rn" are orthogonal to each other with respect to some inner product (.,.) and that A is an orthogonal matrix and B is some invertible matrix. 1. Prove that Ax and Ay are also orthogonal to each other and that ||x|| = ||Ax|| and ||y|| : = ||Ay||. 2. Is it true that Bx and By are also orthogonal to each other and that ||x|| = ||Bx|| and ||y|| = = ||By||? Provide a proof or a counter-example. Problem 13 (Orthogonal Complement). Let W be the subspace of R5 spanned by, 1 2 2 4 u = 3 , v= 7 2 2 Find a basis of the orthogonal complement W- of W. Verify in this particular example that WW₁ = {0} and that dim(W) + dim(W¹) = 5.
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781938168383
Author:
Jay Abramson
Publisher:
OpenStax
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning