(3.8) This question introduces a rather efficient method for calculating the mean and variance of probability distributions. We define the moment generating function M(t) for a random variable x by M(t) = (etx). Show that this definition implies that (x) = M(n) (0), (3.51) (3.52) where M(n) (t) mean (x) = d" M/dt" and further that the M (¹) (0) and the variance σ = = M(2)(0) [M(¹) (0)] 2. Hence show that: - (a) for a single Bernoulli trial, = M(t) pe 1-p; (3.53) (b) for the binomial distribution, M(t) = (pe +1 - p)"; (3.54) (c) for the Poisson distribution, M(t) = em(et-1); (3.55) (d) for the exponential distribution, λ M(t) (3.56) Hence derive the mean and variance in each case and show that they agree with the results derived earlier.

University Physics Volume 3
17th Edition
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:William Moebs, Jeff Sanny
Chapter7: Quantum Mechanics
Section: Chapter Questions
Problem 42P: Show that when 1(x,t) and 2(x,t) are solutions to the time-dependent Schrödinger equation and A, B...
icon
Related questions
Question
(3.8) This question introduces a rather efficient method
for calculating the mean and variance of probability
distributions. We define the moment generating
function M(t) for a random variable x by
M(t) = (etx).
Show that this definition implies that
(x) = M(n) (0),
(3.51)
(3.52)
where M(n) (t)
mean (x)
= d" M/dt" and further that the
M (¹) (0) and the variance σ
=
=
M(2)(0) [M(¹) (0)] 2. Hence show that:
-
(a) for a single Bernoulli trial,
=
M(t) pe 1-p;
(3.53)
(b) for the binomial distribution,
M(t) = (pe +1 - p)";
(3.54)
(c) for the Poisson distribution,
M(t) = em(et-1);
(3.55)
(d) for the exponential distribution,
λ
M(t)
(3.56)
Hence derive the mean and variance in each case
and show that they agree with the results derived
earlier.
Transcribed Image Text:(3.8) This question introduces a rather efficient method for calculating the mean and variance of probability distributions. We define the moment generating function M(t) for a random variable x by M(t) = (etx). Show that this definition implies that (x) = M(n) (0), (3.51) (3.52) where M(n) (t) mean (x) = d" M/dt" and further that the M (¹) (0) and the variance σ = = M(2)(0) [M(¹) (0)] 2. Hence show that: - (a) for a single Bernoulli trial, = M(t) pe 1-p; (3.53) (b) for the binomial distribution, M(t) = (pe +1 - p)"; (3.54) (c) for the Poisson distribution, M(t) = em(et-1); (3.55) (d) for the exponential distribution, λ M(t) (3.56) Hence derive the mean and variance in each case and show that they agree with the results derived earlier.
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning