Imagine that we have a box that emits electrons in a definite but unknown spin state |psi>. If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz = +0.5 * hbar and 80% to have Sz = -0.5 * hbar. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx = +0.5 * hbar and 10% to have Sx = -0.5 * hbar. Determine the state vector for electrons emerging from the box (up to an overall sign). You may assume that the vector components are real. (Hint: the answer is [sqrt(1/5), sqrt(4/5)] ).
Imagine that we have a box that emits electrons in a definite but unknown spin state |psi>. If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz = +0.5 * hbar and 80% to have Sz = -0.5 * hbar. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx = +0.5 * hbar and 10% to have Sx = -0.5 * hbar. Determine the state vector for electrons emerging from the box (up to an overall sign). You may assume that the vector components are real. (Hint: the answer is [sqrt(1/5), sqrt(4/5)] ).
Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter4: The Particle Nature Of Matter
Section: Chapter Questions
Problem 16P
Related questions
Question
Imagine that we have a box that emits electrons in a definite but unknown spin state |psi>. If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz = +0.5 * hbar and 80% to have Sz = -0.5 * hbar. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx = +0.5 * hbar and 10% to have Sx = -0.5 * hbar. Determine the state vector for electrons emerging from the box (up to an overall sign). You may assume that the vector components are real.
(Hint: the answer is [sqrt(1/5), sqrt(4/5)] ).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 4 images
Recommended textbooks for you
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill