
University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 68P
The ion Li2+ makes ail atomic transition from ail n = 4 state to ail n = 2 state, (a) What is the energy of the photon emitted during the transition? (b) What is the wavelength of the photon?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
What is the error determined by the 2/3 rule?
Your colleague gives you a sample that are supposed to consist of Pt-Ni
nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel
schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on
the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2
nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the
Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to
a modern SEM that can produce a probe size as small as 1 nm with a current
as high as 1 nA. You are not expected to damage/destroy the sample. Hint:
keep your answers concise and to the point.
TiO₂ Nanorods
SiO, monolith
a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy
nanoparticles? (5 points)
b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to
the TiO2 nanoarrays, how do you accomplish such a goal? (5 points)
c) Based on the experimental results…
Find the current in 5.00 and 7.00 Ω resistors. Please explain all reasoning
Chapter 8 Solutions
University Physics Volume 3
Ch. 8 - Check Your Understanding Can the magnitude of...Ch. 8 - Check Your Understanding If the Stem-Gerlach...Ch. 8 - Check Your Understanding X-rays are produced by...Ch. 8 - Identify the physical significance of each of the...Ch. 8 - Describe the ground state of hydrogen in terms of...Ch. 8 - Distinguish between Bohr’s and Schiödinger’s model...Ch. 8 - Explain why spectral lines of the hydrogen atom...Ch. 8 - A hydrogen atom is placed in a magnetic field....Ch. 8 - On what factors does the orbital magnetic dipole...Ch. 8 - Explain how a hydrogen atom in the ground state (l...
Ch. 8 - Compare orbital angular momentum with spin angular...Ch. 8 - List all the possible values of s and msfor an...Ch. 8 - Are the angular momentum vectors L necessarily S...Ch. 8 - What is spin-orbit coupling?Ch. 8 - What is Pauli's exclusion principle? Explain the...Ch. 8 - Compare the electron configurations of the...Ch. 8 - Compare the electron configurations of the...Ch. 8 - Atomic and molecular spectra are discrete. What...Ch. 8 - Discuss the process of the absorption of light by...Ch. 8 - NGC1763 is an emission nebula in the Large...Ch. 8 - Why are X-rays emitted only for electron...Ch. 8 - How do the allowed orbits for electrons in atoms...Ch. 8 - Distinguish between coherent and monochromatic...Ch. 8 - Why is a metastable state necessary for the...Ch. 8 - How does light from an incandescent light bulb...Ch. 8 - How is a Blu-Ray player able to read more...Ch. 8 - What are the similarities and differences between...Ch. 8 - The wave function is evaluated at rectangular...Ch. 8 - If an atom has an election in the n = 5 state with...Ch. 8 - What are the possible values of m for an electron...Ch. 8 - What, if any, constraints does a value of m = 1...Ch. 8 - What are the possible values of m for an electron...Ch. 8 - (a) How many angles can L make with the z-axis for...Ch. 8 - The force on an electron is “negative the gradient...Ch. 8 - What is the total number of states with orbital...Ch. 8 - The wave function is evaluated at spherical...Ch. 8 - Coulomb's force law states that the force between...Ch. 8 - Write an expression for the total number of states...Ch. 8 - Consider hydrogen in the ground state, 100 . (a)...Ch. 8 - What is the probability that the is electron of a...Ch. 8 - How many polar angles are possible for an electron...Ch. 8 - What is the maximum number of orbital angular...Ch. 8 - What is the maximum number of orbital angular...Ch. 8 - Find die magnitude of the orbital magnetic dipole...Ch. 8 - A current of I = 2A flows through a square-shaped...Ch. 8 - Estimate the ratio of the electron magnetic moment...Ch. 8 - Find die magnitude of the orbital magnetic dipole...Ch. 8 - For a 3d electron in an external magnetic field of...Ch. 8 - An electron in a hydrogen atom is in the n = 5, l...Ch. 8 - Find the minimum torque magnitude that acts on...Ch. 8 - An election in a hydrogen atom is in 3p state....Ch. 8 - Show that U=B . (Hint: An infinitesimal amount of...Ch. 8 - What is the magnitude of the spin momentum of an...Ch. 8 - What are the possible polar orientations of the...Ch. 8 - For n = 1, write all the possible sets of quantum...Ch. 8 - A hydrogen atom is placed in an external uniform...Ch. 8 - If the magnetic field in the preceding problem is...Ch. 8 - If the magnetic moment in the preceding problem is...Ch. 8 - For n = 2, write all the possible sets of quantum...Ch. 8 - (a) How many electrons can be in the n = 4 shell?...Ch. 8 - (a) What is the minimum value of l for a subshell...Ch. 8 - Unreasonable result. Which of die following...Ch. 8 - Write the electron configuration for potassium.Ch. 8 - Write the election configuration for iron.Ch. 8 - The valence election of potassium is excited to a...Ch. 8 - (a) If one subshell of an atom has nine electrons...Ch. 8 - Write the electron configuration for magnesium.Ch. 8 - Write the electron configuration for carbon.Ch. 8 - The magnitudes of the resultant spins of the...Ch. 8 - What is the minimum frequency of a photon required...Ch. 8 - The ion Li2+ makes ail atomic transition from ail...Ch. 8 - The red light emitted by a ruby laser has a...Ch. 8 - The yellow light from a sodium-vapor street lamp...Ch. 8 - Estimate the frequency of the KaX-ray from cesium.Ch. 8 - Estimate the frequency of the K X-ray from cesium.Ch. 8 - X-rays are produced by striking a target with a...Ch. 8 - For the preceding problem, what happens to the...Ch. 8 - Suppose the experiment in the preceding problem is...Ch. 8 - An X-ray tube accelerates an electron with an...Ch. 8 - A color television tube generates some X-rays when...Ch. 8 - An X-ray tube has an applied voltage of 100 kV....Ch. 8 - The maximum characteristic X-ray photon energy...Ch. 8 - What are the approximate energies of the K and...Ch. 8 - Compare the X-ray photon wavelengths for copper...Ch. 8 - The approximate energies of the K and K X-rays for...Ch. 8 - A carbon dioxide laser used in surgery emits...Ch. 8 - An excimer laser used for vision correction emits...Ch. 8 - For a hydrogen atom in an excited state with...Ch. 8 - What is the probability that the Is electron of...Ch. 8 - Sketch the potential energy function of an...Ch. 8 - Find the value of l, the orbital angular momentum...Ch. 8 - Show that the maximum number of orbital angular...Ch. 8 - What is the magnitude of an electron magnetic...Ch. 8 - What is the maximum number of electron states n =...Ch. 8 - A ground-state hydrogen atom is placed in a...Ch. 8 - Show that the maximum number of electron states...Ch. 8 - The valence election of chlorine is excited to a...Ch. 8 - Which of the following notations are allowed (that...Ch. 8 - The ion Be3+ makes an atomic transition from an n...Ch. 8 - The maximum characteristic X-ray photon energy...Ch. 8 - Derive an expression for the ratio of X-ray photon...Ch. 8 - Compare the X-ray photon wavelengths for copper...Ch. 8 - (a) What voltage must be applied to an X-ray tube...Ch. 8 - A student in a physics laboratory observes a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
8. A 1000 kg car pushes a 2000 kg truck that has a dead battery. When the driver steps on the accelerator, the ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
Chlorine has two isotopes, 35Cl and 37Cl; 75.77% of chlorine is 35Cl, and 24.23% is 37Cl. The atomic mass of 35...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the amplitude, wavelength, period, and the speed of the wave.arrow_forwardA long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains 6500 turns per meter of length. Determine the emf induced in the solenoid when the current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s. Number Unitsarrow_forwardA coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.arrow_forward
- Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forwardA camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forwardGiven two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward
- (a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forwardIn a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x marrow_forwardDon't use ai to answer I will report you answerarrow_forward
- A shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forwardAn amoeba is 0.309 cm away from the 0.304 cm focal length objective lens of a microscope.arrow_forwardTwo resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10Is. Let r be the ratio R1/R2. Find r. I know you have to find the equations for V for both situations and relate them, I'm just struggling to do so. Please explain all steps, thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning