3. An oil of viscosity 1.8 cp and relative density 0.8 is contained in an open tank located above the application site. A 1.5-inch diameter pipe extends vertically from the bottom of the tank and is 5 m long. The oil level in the tank remains constant at 3 m above the bottom of the tank. In a case with friction the discharge speed can be obtained in the form of the following Equation. Calculate the flow rate of oil discharged per hour. Assume that the pipe is commercial steel (ε=0.05 mm). V= 2gh √/1+ 1+f D
3. An oil of viscosity 1.8 cp and relative density 0.8 is contained in an open tank located above the application site. A 1.5-inch diameter pipe extends vertically from the bottom of the tank and is 5 m long. The oil level in the tank remains constant at 3 m above the bottom of the tank. In a case with friction the discharge speed can be obtained in the form of the following Equation. Calculate the flow rate of oil discharged per hour. Assume that the pipe is commercial steel (ε=0.05 mm). V= 2gh √/1+ 1+f D
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:SOLVES TEP BY STEP
DONT USE CHATGPT DONT USE AI
3. An oil of viscosity 1.8 cp and relative density 0.8 is contained in an
open tank located above the application site. A 1.5-inch diameter pipe
extends vertically from the bottom of the tank and is 5 m long. The oil
level in the tank remains constant at 3 m above the bottom of the tank.
In a case with friction the discharge speed can be obtained in the form
of the following Equation. Calculate the flow rate of oil discharged per
hour. Assume that the pipe is commercial steel (ε=0.05 mm).
V=
2gh
+f-
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY