from The water in a large tank exits through a horizontal circular pipe of diameter D=0.01m and length L-94m. The centre of the exit of the pipe is h=1.0m below the water surface. We can assume that the flow entrance to the pipe is smooth so that there are no minor losses. The flow in the pipe is laminar, the friction factor can be assumed constant and 10=64/Rep where the Reynolds number is based on the pipe diameter and mean flow speed in the piper Taking frictional losses into account, solve the resulting quadratic equation to calculate Use: kinematic viscosity given by v0.00000114 m² density of water given by 1000 kg/m3 acceleration due to gravity of 9.81 m/s2 speed of the flow out of the pipe. Give your answer in m/s to 2 decimal places.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Question 8
download image
D
The water in a large tank exits through a horizontal circular pipe of diameter D=0.01m and length L=94m. The centre of the exit of the pipe is h=1.0m below the water surface. We can assume that the flow entrance to the pipe is smooth so that there are no minor losses. The flow in the pipe is laminar, the friction factor can be assumed constant and
can be found from
h
fD=64/Rep
where the Reynolds number is based on the pipe diameter and mean flow speed in the pipe.
Taking frictional losses into account, solve the resulting quadratic equation to calculate the speed of the flow out of the pipe. Give your answer in m/s to 2 decimal places.
Use: kinematic viscosity given by v=0.00000114 m²/s
density of water given by 1000 kg/m3
acceleration due to gravity of 9.81 m/s²
A Moving to another question will save this response.
<<< Question 8 of 11 > >>
Transcribed Image Text:Question 8 download image D The water in a large tank exits through a horizontal circular pipe of diameter D=0.01m and length L=94m. The centre of the exit of the pipe is h=1.0m below the water surface. We can assume that the flow entrance to the pipe is smooth so that there are no minor losses. The flow in the pipe is laminar, the friction factor can be assumed constant and can be found from h fD=64/Rep where the Reynolds number is based on the pipe diameter and mean flow speed in the pipe. Taking frictional losses into account, solve the resulting quadratic equation to calculate the speed of the flow out of the pipe. Give your answer in m/s to 2 decimal places. Use: kinematic viscosity given by v=0.00000114 m²/s density of water given by 1000 kg/m3 acceleration due to gravity of 9.81 m/s² A Moving to another question will save this response. <<< Question 8 of 11 > >>
Expert Solution
steps

Step by step

Solved in 4 steps with 8 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY