2- An inlet water solution of 100 kg/h containing 0.010 wt fraction nicotine (A) in water is stripped with a kerosene stream of 200 kg/h containing 0.0005 wt fraction nicotine in a countercurrent-stage tower. The water and kerosene are essentially immiscible in each other. It is desired to reduce the concentration of the exit water to 0.0010 wt fraction nicotine. Determine the theoretical number of stages needed. The equilibrium data are as follows, with x the weight fraction of nicotine in the water solution and y in the kerosene: X y X y 0.001010 0.000806 0.00746 0.00682 0.00246 0.001959 0.00988 0.00904 0.00500 0.00454 0.0202 0.0185

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
2- An inlet water solution of 100 kg/h containing 0.010 wt fraction nicotine (A) in water is
stripped with a kerosene stream of 200 kg/h containing 0.0005 wt fraction nicotine in a
countercurrent-stage tower. The water and kerosene are essentially immiscible in each other. It is
desired to reduce the concentration of the exit water to 0.0010 wt fraction nicotine. Determine the
theoretical number of stages needed. The equilibrium data are as follows, with x the weight
fraction of nicotine in the water solution and y in the kerosene:
X
y
X
y
0.001010
0.000806
0.00746
0.00682
0.00246
0.001959
0.00988
0.00904
0.00500
0.00454
0.0202
0.0185
Transcribed Image Text:2- An inlet water solution of 100 kg/h containing 0.010 wt fraction nicotine (A) in water is stripped with a kerosene stream of 200 kg/h containing 0.0005 wt fraction nicotine in a countercurrent-stage tower. The water and kerosene are essentially immiscible in each other. It is desired to reduce the concentration of the exit water to 0.0010 wt fraction nicotine. Determine the theoretical number of stages needed. The equilibrium data are as follows, with x the weight fraction of nicotine in the water solution and y in the kerosene: X y X y 0.001010 0.000806 0.00746 0.00682 0.00246 0.001959 0.00988 0.00904 0.00500 0.00454 0.0202 0.0185
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The