3. A very viscous Newtonian fluid undergoes creeping flow in the space between two stationary concentric spheres as shown to the right. Simplify the equations of continuity and motion (see next page) to derive a set of equations that describe the fluid velocity as a function of pressure difference. Do not derive the velocity profile. Neglect the end effects, assume steady state and creeping flow, assume that ve depends only on r and 0, and assume that the other velocity components are zero. Fluid in Fluid out Problem 3 Equations Equation of Continuity: Spherical coordinates (r,0,0): др + at 1 д (pr²v₁) + 1 д 1 д (pv sin 0) + r² dr r sin o de (pv) = 0 (B.4-4) r sin 0 дф Equations of Motion: Spherical coordinates (r,0,0): до dv % до P + + - ot dr г де r sin 0 do a² 11+ ar2 1 д 2 sin 0 de av, sin 0. de ave + at ave dr r de ve ave r =- 1 др dr r² sin² do² V dve ve- cot e + +P&r (B.6-7) 1 др + + =- r sin 0 дф r r de дор 1 д 1 д +1 + (v sin 0) 2 dr dr 12 до sin 0 де (0)) + 1 J²ve 2 dv, + r² sin² 0 do² 12 до 2 cote dv 2 sin 0 do + P&e (B.6-8) P до до vedo v + + + at 1 д +μ 2 dr дт V du v + cot дг г де r sin 0 до д до 1 д 0 де e) r == r sin 0 до +()+((sin 0) + 12 sin' a des² + på sin o dig sin a do "The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V. Vv] in Table A.7-3, because we have added to Eq. (M) the expression for (2/r)(V-v), which is zero for fluids with constant p. This gives a much simpler equation. 1 др 1 2 до do 2 cot dve + + P80 (B.6-9)
3. A very viscous Newtonian fluid undergoes creeping flow in the space between two stationary concentric spheres as shown to the right. Simplify the equations of continuity and motion (see next page) to derive a set of equations that describe the fluid velocity as a function of pressure difference. Do not derive the velocity profile. Neglect the end effects, assume steady state and creeping flow, assume that ve depends only on r and 0, and assume that the other velocity components are zero. Fluid in Fluid out Problem 3 Equations Equation of Continuity: Spherical coordinates (r,0,0): др + at 1 д (pr²v₁) + 1 д 1 д (pv sin 0) + r² dr r sin o de (pv) = 0 (B.4-4) r sin 0 дф Equations of Motion: Spherical coordinates (r,0,0): до dv % до P + + - ot dr г де r sin 0 do a² 11+ ar2 1 д 2 sin 0 de av, sin 0. de ave + at ave dr r de ve ave r =- 1 др dr r² sin² do² V dve ve- cot e + +P&r (B.6-7) 1 др + + =- r sin 0 дф r r de дор 1 д 1 д +1 + (v sin 0) 2 dr dr 12 до sin 0 де (0)) + 1 J²ve 2 dv, + r² sin² 0 do² 12 до 2 cote dv 2 sin 0 do + P&e (B.6-8) P до до vedo v + + + at 1 д +μ 2 dr дт V du v + cot дг г де r sin 0 до д до 1 д 0 де e) r == r sin 0 до +()+((sin 0) + 12 sin' a des² + på sin o dig sin a do "The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V. Vv] in Table A.7-3, because we have added to Eq. (M) the expression for (2/r)(V-v), which is zero for fluids with constant p. This gives a much simpler equation. 1 др 1 2 до do 2 cot dve + + P80 (B.6-9)
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The