17. The effect sizes for the SNPS linked to performance on IQ tests are very very small. Why does that make it unlikely that we can genetically engineer humans with super high IQ? 18. True or False: Diseases such as type II diabetes and lung cancer are likely caused by mutations to a single gene. Explain your answer. 19. True or False: SNPS that are associated to disease using GWAS design should be immediately consid- ered for further molecular functional studies. Explain your answer.
Q: Earlier this year as part of their Twins Study, NASA issued a press release regarding preliminary…
A: The research is never ending program. This opens the way for new knowledge and understanding. Space…
Q: The wildtype sequence of a gene is the following: wt: 3' TAC AAA TCT AGC CCG 5' and the…
A: We'll look at three distinct mutations that were discovered in a wild-type gene sequence in this…
Q: 2. Imagine a combination of microevolutionary mechanisms other than mutation/se- lection. How do you…
A: Microevolution is characterized as the adjustment of the allele frequencies over the long haul in a…
Q: Do you think each of the following types of mutationswould have very severe effects, mild effects,…
A: A modification in the sequence of the bases in DNA is referred to as a mutation. The mutation could…
Q: low birthweight (LBW) and normal birthweight (NBW) individuals by treating isolated DNA from both…
A: All cells in an organism contain the same DNA , cell types and functions differ due to the…
Q: Explain the difference in results for the RT-PCR from the CD4+ T cells and the RT-PCR from the CD8+…
A: RT-PCR (Reverse Transcription Polymerase Chain Reaction) is a molecular technique commonly used to…
Q: Based on the sensitivity of DNA to DNase I, as illustrated in Figure , which type of chicken…
A: Deoxyribonucleic acid (DNA) is the genetic material of the most of the organisms that carry coded…
Q: a. Explain how the sea urchin and salmon data demonstrate both of Chargaff’s rules b. How…
A: Chargaff's rule is for double standard DNA are: 1. The molar ratio of A to T equals to 1. Similarly,…
Q: 1. You are required to use the pET 22b expression vector in a cloning experiment. If the vector is…
A: Mass of vector = 5.5 * 1000 base pairs * 660 g/mol = 3.63 * 106 g/mol so, mass of vector is 3.63 *…
Q: 1. Evaluate the statement that "exceptions" exist to the Universal Genetic Code. Examine possible…
A: In every organism information is stored in DNA.The relationship between the sequence of amino…
Q: treat every genetically related health problem and to keep people alive at all cost. If this…
A: Each new genetic test conducted raises serious medical, public health, and social policy issues…
Q: Below is shown an 8kb region of the human genome, with the proportion of the nucleotides that are…
A: Introduction : Any segment of a gene that will be included in the mature RNA produced by that gene…
Q: 3) You have identified an interesting mutant in gene P. Using a Punnett square, demonstrate the…
A: The pure breeding lines of mutant and wild type organism must be crossed to determine if the…
Q: If the effects of mutations 1 +3 is an eye size intermediate between wild type and mutation 1 alone,…
A: DNA or deoxyribonucleic acid is a polymer of deoxyribonucleotides connected together via…
Q: As a hobby you propagate a population of worms. You notice that one worm is now clear instead of…
A: Deletions are mutations in which a section of DNA is lost, or deleted. Since protein-coding DNA is…
Q: assess anatomical distribution of gene expression. genomic pcr nortbern blotting Rnai in situ…
A: The genes are the functional part of the DNA that undergoes transcriptional process and ultimately…
Q: Suppose that you could undergo genetic testing at age 18 for susceptibility to a genetic disease…
A: Genetic diseases are caused due to mutations in the genes that are acquired from the parents or can…
Q: easec many age ea Omm mm). d
A: Homozygote mutants refer to individuals who have two copies of a particular gene, and both copies…
Q: Source 23.9 24.9 25.2 E coli 26.0 Yeast 313 32.9 18.7 17.1 Sea urchin 32.8 32.1 17.7 184 Rat 28.6…
A: DNA is a nucleic acid that is made up of four nucleotides namely Adenine, Thymine, Cytosine, and…
Q: To determine the reproducibility of mutation fre-quency measurements, you do the following…
A: A gene is the essential physical and functional unit of heredity. Genes are comprised of DNA. A…
Q: ased on the NCBI blast below Are there any pathogenic missense mutations in the human gene FGFR3?…
A: Thе providеd NCBI BLAST rеsults show a comparison bеtwееn thе fibroblast growth factor rеcеptor 3…
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
- True or false? Gene expression patterns can be inherited.You may have heard about the diet that is based on a persons blood type and claims to restore the bodys natural genetic rhythms and improve health. Research may one day reveal exactly which foods might best turn on and off specific genes to defend against specific chronic diseases. No doubt marketers will rush to fill grocery shelves with foods manufactured to match genetic profiles. Why do you think these genetic approaches to diet and health might be more or less appealing than eating patterns that include a variety of fruits, vegetables, whole grains, milk products, and meats?True or false? Some humans are genetically modified.
- What role would twin and adoption studies play in selecting a model for determining whether attendance at medical school is a heritable trait? What heritability values would make you take the study to the next level?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do James and Sally have any guarantees that the tests and recommendations are scientifically valid?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think that companies should be allowed to market such tests directly to the public, or do you believe that only a physician should be able to order them?
- James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. What kinds of regulations, if any, should be in place to ensure that the results of these tests are not abused?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think parents should be able to order such a test for their children? What if the test indicates that a child is at risk for a disease for which there is no known cure?Name three genes whose mutations lead to an altered behavioral phenotype. Briefly describe the normal function of the mutated gene as well as the altered phenotype.
- Genetics and Social Behavior Of the following findings, which does not support the idea that alcoholism is genetic? a. Some strains of mice select alcohol over water 75% of the time, whereas others shun alcohol. b. The concordance value is 55% for MZ twins and 28% for DZ twins. c. Biological sons of alcoholic men who have been adopted have a rate of alcoholism more like that of their adoptive fathers. d. There is a 20% to 25% risk of alcoholism in the sons of alcoholic men. e. None of these.Mary and Marcie. identical twins, go to the same internist who is also a faculty member at a major medical center. At their last visit, they each received a brochure describing a genetics research program recently launched by the hospital and its affiliated university. Researchers were asking for volunteers to fill out a questionnaire and a consent form, donate a blood sample, and have their medical records encoded and transferred to a database. The goal was to enroll 100,000 participants, and the brochure noted that over 10,000 people had already agreed to participate. The blood sample would be used to extract DNA. which would be encoded with the same number as the medical records. This DNA would be used to search for genes associated with conditions such as arthritis, diabetes, and Alzheimer disease. The idea is that researchers interested in studying arthritis would use the medical records to identify which participants have the condition and then use DNA from those individuals to find genetic similarities that are not present in participants who do not have arthritis. The genetic similarities help identify regions of the genome that contain genes associated with arthritis. These regions can then be studied in detail to identify and isolate genes that may be associated with arthritis and other inflammatory disorders. In exchange for enrolling, participants would be informed about any genetic conditions or predispositions to genetic disease they carry and would receive free access to testing. After discussing the brochure. Mary decided to enroll, but Marcie decided she did not want to do so. She said she did not want to know what diseases she may develop or which disease genes she may carry. At their next annual visit. Marys internist told her that because her questionnaire indicated that some relatives had Alzheimer disease, her DNA was used in a study to identify risk genes. He said she had been identified as a carrier of a gene that greatly increased the likelihood that she would develop Alzheimer disease. The physician told her that age was the greatest risk factor, and while it was not 100% certain she would become a victim of Alzheimer disease, the gene she carries is a factor in 2025% of all cases. Mary asked if there was anything she could do about these findings. The internist told her that exercise, controlling blood pressure and cholesterol levels, as well as participating in mentally challenging activities such as reading or playing a musical instrument may all help reduce her chances of developing this disease. Mary then asked if Marcie was going to be told about Marys genetic risk, and the internist said that he would not tell her. For the next few days. Mary was conflicted about the situation. Marcie was an Identical twin, and If Mary carried a gene predisposing her to Alzheimer disease. Marcie must carry the same gene. Marcie did not exercise with Mary, had high blood pressure, and little interest in reading or social activities. Mary did not know whether she should tell Marcie. If you were advising Mary, what would you say? Should she tell Marcie about the risk? Should she not tell her, but instead try to get Marcie to exercise and be more social? Should Mary ask their internist to talk with Marcie about this?Pedigree Analysis Is a Basic Method in Human Genetic: What does OMIM stand for? What kinds of information are in this database?