11.2 19.36 • When water boils in a pot with a loose lid, the increased pressure forces the lid upward, releasing steam and reducing the pres- sure in the pot so that the lid drops back down. If the water continues to boil, the lid can rattle upward and downward. Consider a 1 L pot half filled with boiling water. In this case there is half a liter, or 12 mol, of air and steam above the water. (a) Estimate the mass of the lid. (b) When the water is rapidly boiling, estimate the height to which the lid jumps during a steam-release event. (c) By multiplying the weight of the lid by the height of the jump, estimate the work done by the steam as the lid moves upward. (d) Treat the process as adiabatic and use the first law of thermodynamics to estimate the drop in the temperature of the steam as it pushes the lid upward.
11.2 19.36 • When water boils in a pot with a loose lid, the increased pressure forces the lid upward, releasing steam and reducing the pres- sure in the pot so that the lid drops back down. If the water continues to boil, the lid can rattle upward and downward. Consider a 1 L pot half filled with boiling water. In this case there is half a liter, or 12 mol, of air and steam above the water. (a) Estimate the mass of the lid. (b) When the water is rapidly boiling, estimate the height to which the lid jumps during a steam-release event. (c) By multiplying the weight of the lid by the height of the jump, estimate the work done by the steam as the lid moves upward. (d) Treat the process as adiabatic and use the first law of thermodynamics to estimate the drop in the temperature of the steam as it pushes the lid upward.
Chapter3: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 73P: Compare the charge in internal energy of an ideal gas for a quasi-static adiabatic expansion with...
Related questions
Question
If ur using Chatgpt leave this problem otherwise will downvote
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College