1.- Use Laplace's method to obtain an asymtpotic expansion valid for x → ∞ of the complementary error function erfc(x) = 2/17√ √ p°³° ՐՁ e -t2 dt = 2 -x2 e S -2tx-t2 e e dt, (Note the Compare the asymp- totic results with the exact values erfc(2) = 0.004677735... and erfc(4) = 0.00000 00154 173.... Is the asymptotic expansion convergent? [Hints: Note that the function -2t (which is part of the exponent in the exponential e in the second integral above) has its maximum at an endpoint of the integration interval. Expand exp (-2) in a power series around the origin.] -2tx
1.- Use Laplace's method to obtain an asymtpotic expansion valid for x → ∞ of the complementary error function erfc(x) = 2/17√ √ p°³° ՐՁ e -t2 dt = 2 -x2 e S -2tx-t2 e e dt, (Note the Compare the asymp- totic results with the exact values erfc(2) = 0.004677735... and erfc(4) = 0.00000 00154 173.... Is the asymptotic expansion convergent? [Hints: Note that the function -2t (which is part of the exponent in the exponential e in the second integral above) has its maximum at an endpoint of the integration interval. Expand exp (-2) in a power series around the origin.] -2tx
Algebra for College Students
10th Edition
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Jerome E. Kaufmann, Karen L. Schwitters
Chapter9: Polynomial And Rational Functions
Section9.2: Remainder And Factor Theorems
Problem 51PS
Related questions
Question
hand write the solution please. dont use ai tools
![1.- Use Laplace's method to obtain an asymtpotic expansion valid for x → ∞ of the complementary
error function
erfc(x) = 2/17√ √ p°³°
ՐՁ
e
-t2
dt =
2
-x2
e
S
-2tx-t2
e
e
dt,
(Note the
Compare the asymp-
totic results with the exact values erfc(2) = 0.004677735... and erfc(4) = 0.00000 00154 173.... Is
the asymptotic expansion convergent? [Hints: Note that the function -2t (which is part of the
exponent in the exponential e in the second integral above) has its maximum at an endpoint
of the integration interval. Expand exp (-2) in a power series around the origin.]
-2tx](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fafade1a9-1f29-4d84-b55a-a57e5a303c8b%2F8fd4b6f0-e22f-472e-b373-16fc877c3607%2Fmn9t5ed_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1.- Use Laplace's method to obtain an asymtpotic expansion valid for x → ∞ of the complementary
error function
erfc(x) = 2/17√ √ p°³°
ՐՁ
e
-t2
dt =
2
-x2
e
S
-2tx-t2
e
e
dt,
(Note the
Compare the asymp-
totic results with the exact values erfc(2) = 0.004677735... and erfc(4) = 0.00000 00154 173.... Is
the asymptotic expansion convergent? [Hints: Note that the function -2t (which is part of the
exponent in the exponential e in the second integral above) has its maximum at an endpoint
of the integration interval. Expand exp (-2) in a power series around the origin.]
-2tx
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra for College Students](https://www.bartleby.com/isbn_cover_images/9781285195780/9781285195780_smallCoverImage.gif)
Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra for College Students](https://www.bartleby.com/isbn_cover_images/9781285195780/9781285195780_smallCoverImage.gif)
Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning