Exam prep

docx

School

University of Notre Dame *

*We aren’t endorsed by this school

Course

PUBLIC POL

Subject

Statistics

Date

Feb 20, 2024

Type

docx

Pages

11

Uploaded by BailiffAlbatrossMaster747

Report
PBPL 210 MOCK FINAL EXAM Use the following tables to answer questions 1 and 2. RECODE of | PARTLIV | (Living in | steady | partnership | ) | Freq. Percent Cum. ------------+----------------------------------- 0 | 572 41.15 41.15 1 | 818 58.85 100.00 ------------+----------------------------------- Total | 1,390 100.00 variable | mean p50 variance sd -------------+---------------------------------------- livepartner | .5884892 1 .242344 .4922845 ------------------------------------------------------ Question #1: Identify what level of measurement “livepartner” is. Explain why. A. Nominal B. Continuous/Interval/Ratio C. Ordinal Question #2: Identify the relevant central tendency statistics. Provide an interpretation of these statistics.
Use the table provided below to answer questions 3 and 4. RECODE of | MAINSTAT | (Main | status) | Freq. Percent Cum. ------------+----------------------------------- employed | 821 59.11 59.11 unemployed | 58 4.18 63.28 student | 29 2.09 65.37 disabled | 40 2.88 68.25 retired | 299 21.53 89.78 domestic | 142 10.22 100.00 ------------+----------------------------------- Total | 1,389 100.00 variable | mean p50 variance sd -------------+---------------------------------------- empstat | 2.542117 1 4.009212 2.002302 ------------------------------------------------------ Question #3: Identify what level of measurement “empstat” is. Explain why. A. Nominal B. Continuous/Interval/Ratio C. Ordinal Question #4: Identify the relevant central tendency and dispersion statistics. Provide an interpretation of these statistics.
Use the table provided below to answer question 5. . ttest empstat, by(livepartner) unequal Two-sample t test with unequal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- 0 | 572 2.846154 .083925 2.007194 2.681314 3.010993 1 | 817 2.329253 .0690044 1.972368 2.193806 2.4647 ---------+-------------------------------------------------------------------- combined | 1,389 2.542117 .0537252 2.002302 2.436725 2.647508 ---------+-------------------------------------------------------------------- diff | .5169005 .1086509 .3037364 .7300646 ------------------------------------------------------------------------------ diff = mean(0) - mean(1) t = 4.7574 Ho: diff = 0 Satterthwaite's degrees of freedom = 1215.33 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000 Question #5: Are the means of the variable “empstat” across “livepartner” significantly different? Justify your response.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Use the table below to answer question 6. . ttest marst, by(dgovhous) unequal Two-sample t test with unequal variances ------------------------------------------------------------------------------ Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- 0 | 317 2.794953 .1143426 2.035812 2.569984 3.019922 1 | 1,029 3.186589 .0663026 2.126856 3.056485 3.316693 ---------+-------------------------------------------------------------------- combined | 1,346 3.094354 .0575551 2.111575 2.981446 3.207261 ---------+-------------------------------------------------------------------- diff | -.3916362 .1321751 -.651271 -.1320015 ----------------------------------------------------------------------------- diff = mean(0) - mean(1) t = -2.9630 Ho: diff = 0 Satterthwaite's degrees of freedom = 545.277 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.0016 Pr(|T| > |t|) = 0.0032 Pr(T > t) = 0.9984 Question #6: Calculate the missing variables and determine whether the means of the variable “marst” across “dgovhous” significantly differ. Justify your response. Mean diff = -0.391636 std err diff = 0.04804 T= -8.15
Use the tables below to answer questions 7 and 8. | earnings edulevel -------------+------------------ earnings | 1.0000 edulevel | 0.3511 1.0000 Bivariate Regression Model - govresp & edyears Source | SS df MS Number of obs = 1,376 -------------+---------------------------------- F(1, 1374) = 12.24 Model | 5.79518932 1 5.79518932 Prob > F = 0.0005 Residual | 650.436321 1,374 .47338888 R-squared = 0.0088 -------------+---------------------------------- Adj R-squared = 0.0081 Total | 656.23151 1,375 .47725928 Root MSE = .68803 ------------------------------------------------------------------------------ govresp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- edyears | -.0225691 .0064504 -3.50 0.000 -.0352229 -.0099153 cons | 3.772245 .0904242 41.72 0.000 3.594861 3.94963 ------------------------------------------------------------------------------ Question #7: Interpret the correlation coefficients of the variables “govresp” and “edyears”. Question #8: Interpret the regression model. Use the table below to answer question 9 and 10. Multivariate Regression Model - govresp, edyears, age, kids Source | SS df MS Number of obs = 1,359 -------------+---------------------------------- F(3, 1355) = 14.08
Model | 19.5282894 3 6.50942982 Prob > F = 0.0000 Residual | 626.503853 1,355 .462364467 R-squared = 0.0302 -------------+---------------------------------- Adj R-squared = 0.0281 Total | 646.032143 1,358 .475723227 Root MSE = .67997 ------------------------------------------------------------------------------ govresp | Coef. Std. Err. t P>|t| Beta -------------+---------------------------------------------------------------- edyears | -.0224012 .0064531 -3.47 0.001 -.0933707 age | -.0053246 .0010487 -5.08 0.000 -.1403984 kids | .0461343 .048662 0.95 0.343 .0262805 _cons | 4.023399 .1092026 36.84 0.000 . ------------------------------------------------------------------------------ Coefficient Table of Regression Model Observed SD: 0.6897 SD of error: 0.6800 ------------------------------------------------------------------------------- | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- edyears | -0.0224 -3.471 0.001 -0.064 -0.032 -0.093 2.875 age | -0.0053 -5.077 0.000 -0.097 -0.008 -0.140 18.186 kids | 0.0461 0.948 0.343 0.018 0.067 0.026 0.393 constant | 4.0234 36.843 0.000 . . . . ------------------------------------------------------------------------------- Question #9: Interpret the slope coefficients of the variables “edyears”, “age”, and “kids”. Question #10: Interpret the regression model, relevant standardized or semi- standardized coefficients, and compare the bivariate and multivariate regression models.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Question #11: When comparing two bivariate regression models, what should we analyze to determine which regression model is ‘better’ or ‘preferred’? Why?
Question #12: When comparing a bivariate regression model and a multivariate regression model, what should we analyze to determine which regression model is ‘better’ or ‘preferred’? Why? Question #13: Explain the difference between the following terms: population, sample, sampling distribution. Question #14: What does the z-score measure? A. One standard deviation in a normal distribution B. Two standard errors in a t-test C. One standard error in a normal distribution D. Two standard deviations in a t-test Question #15: Calculate the standard deviation when you have six cases with the values: 1, 5, 9, 11, 25.
Question #16: Name and describe the five OLS assumptions. Question #17: Name and describe the four bad controls. Question #18: What does it mean for a variable to be exogenous to another variable? What does it mean for a variable to be endogenous to another variable?
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Still to come: Polynomials Interaction Effects DD Model Etc. . reg FoodInsecure treatall##prepost Unemploymentrate Personalincome Source | SS df MS Number of obs = 102 -------------+---------------------------------- F(5, 96) = 19.58 Model | 722.915192 5 144.583038 Prob > F = 0.0000 Residual | 708.993535 96 7.38534932 R-squared = 0.5049 -------------+---------------------------------- Adj R-squared = 0.4791 Total | 1431.90873 101 14.1773141 Root MSE = 2.7176 ---------------------------------------------------------------------------------- FoodInsecure | Coef. Std. Err. t P>|t| [95% Conf. Interval] -----------------+---------------------------------------------------------------- 1.treatall | -3.067012 .803428 -3.82 0.000 -4.661803 -1.47222 1.prepost | -1.254218 1.133425 -1.11 0.271 -3.504049 .995613 | treatall#prepost | 1 1 | .4769207 1.114138 0.43 0.670 -1.734625 2.688467 | Unemploymentrate | 1.026893 .23173 4.43 0.000 .5669125 1.486873 Personalincome | -7.05e-10 6.88e-10 -1.02 0.309 -2.07e-09 6.62e-10 _cons | 10.46941 1.568835 6.67 0.000 7.3553 13.58353 ---------------------------------------------------------------------------------- . listcoef regress (N=102): Unstandardized and standardized estimates Observed SD: 3.7653 SD of error: 2.7176 ------------------------------------------------------------------------------- | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- 1.treatall | -3.0670 -3.817 0.000 -1.490 -0.815 -0.396 0.486
1.prepost | -1.2542 -1.107 0.271 -0.630 -0.333 -0.167 0.502 1.treatall~t | 0.4769 0.428 0.670 0.222 0.127 0.059 0.466 Unemployme~e | 1.0269 4.431 0.000 2.054 0.273 0.546 2.000 Personalin~e | -0.0000 -1.024 0.309 -0.284 -0.000 -0.075 4.0e+08 constant | 10.4694 6.673 0.000 . . . . -------------------------------------------------------------------------------