Ugur Dikbas Module 4 - Case Study
docx
keyboard_arrow_up
School
Embry-Riddle Aeronautical University *
*We aren’t endorsed by this school
Course
335
Subject
Mechanical Engineering
Date
Dec 6, 2023
Type
docx
Pages
7
Uploaded by CountOwlPerson658
1
Flight 232: Navigating Design Flaws and Safety Imperatives in Aviation
Ugur Dikbas
College of Aeronautics, Embry-Riddle Aeronautical University
BSAS 335 Mechanical and Structural Factors in Aviation Safety
Mike Millard
November 11, 2023
2
Flight 232: Navigating Design Flaws and Safety Imperatives in Aviation
Introduction
The exploration into the events of United Airlines Flight 232, a DC-10 that faced
a catastrophic tail-mounted engine failure on July 19, 1989, presents a profound
opportunity to delve into the complexities of aviation safety. This analysis endeavors to
meticulously investigate the various facets surrounding the incident, focusing on design,
and manufacturing flaws, contributing factors, structural and mechanical aspects, human
and organizational elements, as well as the subsequent outcomes. The objective is to not
only comprehend the intricacies of this specific accident but also to glean broader
insights that contribute to the ongoing discourse on aviation safety.
Primary Causal Factors of the Accident:
At the heart of the United Airlines Flight 232 tragedy lies a critical manufacturing
flaw concealed within the fan disk of the tail-mounted engine (Filburn & Filburn, 2020).
This unsuspected defect served as the primary causal factor, initiating a cascading
sequence of events that thrust the flight into peril. The investigation brought to light the
intricate nature of this flaw, emphasizing the pivotal role of quality control in the
manufacturing process. The undetected fault in the engine's design unveiled the
vulnerability inherent in assuming flawless production and highlighted the need for
robust inspection and testing procedures. The consequences of this manufacturing
oversight reverberated beyond the immediate incident, prompting a reevaluation of
industry-wide manufacturing practices.
3
Contributing Factors to the Accident:
While the manufacturing flaw takes center stage, a meticulous examination of the
accident reveals a tapestry of contributing factors interwoven into the incident's chain of
events (Filburn & Filburn, 2020). Inadequacies in redundancy systems, coupled with
assumptions about the infrequency of such catastrophic failures, played pivotal roles. The
errors in assessing the consequences of engine failure further amplified the complexity of
the situation. These contributing factors, while not the primary cause, significantly
shaped the unfolding of events, illustrating the interconnectedness of various elements in
aviation safety. Understanding these intricate links provides a nuanced foundation for
developing comprehensive risk mitigation strategies to fortify the resilience of aviation
systems.
Structural and Mechanical Factors Related to the Accident:
Delving deeper into the structural and mechanical aspects of the DC-10 reveals a
dichotomy of strengths and vulnerabilities. The incident serves as a profound case study
on the imperatives of robust aircraft design, construction, and maintenance. The
vulnerabilities exposed in the tail-mounted engine present an opportunity for reflection
on the need for continuous improvement in component reliability and maintenance
procedures. Examining the structural and mechanical factors not only dissects the specific
challenges faced by Flight 232 but also opens a broader conversation on the relentless
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
4
pursuit of excellence in aerospace engineering to enhance the safety and reliability of
future aircraft (Filburn & Filburn, 2020).
Relevant Human Factors and/or Organizational Factors:
The human and organizational facets surrounding the accident unfold a narrative
of critical deficiencies that significantly contributed to the severity of the incident (von
Thaden et al., 2006). A closer look at crew training and decision-making processes
reveals a complex interplay of human errors against the backdrop of organizational
shortcomings, including communication breakdowns and inadequate procedures. This
section underscores the intricate relationship between human factors and organizational
culture, emphasizing the crucial role of comprehensive training programs and procedural
enhancements in fortifying aviation safety. Unraveling the human and organizational
factors offers valuable insights into how a holistic approach to safety extends beyond
technical considerations (Orasanu, 2010)
Outcomes of the Accident:
The aftermath of the Flight 232 accident witnessed a series of developments that
rippled through the aviation industry. Airworthiness directives were issued, regulations
underwent amendments, and redesigned standards were implemented. However, the real-
world outcomes revealed disparities between the recommendations proposed by the
5
investigation board and the industry's responses. This disjunction prompts critical
reflections on the efficacy of regulatory measures and the challenges associated with
translating recommendations into tangible actions. Examining these outcomes not only
offers insights into the industry's response mechanisms but also serves as a springboard
for discussions on refining future regulatory practices to enhance overall aviation safety
(McDonnell Douglas D-10 United Airlines Flight 232 N1819U, n.d.).
Risk Mitigation or Reduction Strategies:
Building upon the comprehensive analysis, potential risk mitigation strategies
come to the forefront as critical considerations for the aviation industry. These strategies
encompass enhancements in manufacturing quality control, ongoing improvements in
aircraft design and maintenance, and the implementation of comprehensive training
programs addressing human factors (Filburn & Filburn, 2020). Evaluating the efficacy of
these strategies requires not only a critical examination of the implementation of
investigation board recommendations but also an exploration of how industry practices
align with evolving safety standards. This forward-looking perspective on bolstering
aviation safety sets the stage for proactive measures that extend beyond reactive
responses, contributing to the continued advancement of safety protocols in the aviation
industry.
Conclusion
6
The case of United Airlines Flight 232 serves as a poignant illustration of the
intricate dynamics involved in aviation accidents. The expanded analysis elucidates the
interconnectedness of design flaws, human factors, and organizational deficiencies,
providing a comprehensive understanding of the incident. Beyond technical
improvements, the case underscores the imperative for a holistic approach to aviation
safety, encompassing design, human factors, and organizational culture, to ensure the
continued advancement of safety standards in the aviation industry.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
7
References
Filburn, T., & Filburn, T. (2020). Loss of Flight Controls, United Flight 232. Commercial
Aviation in the Jet Era and the Systems that Make it Possible, 113-124.
von Thaden, T. L., Wiegmann, D. A., & Shappell, S. A. (2006). Organizational factors in
commercial aviation accidents. The international journal of aviation psychology, 16(3),
239-261.
Orasanu, J. M. (2010). Flight crew decision-making. In Crew resource management (pp. 147-
179). Academic Press.
McDonnell Douglas D-10 United Airlines Flight 232, N1819U. (n.d.). FAA.
https://www.faa.gov/lessons_learned/transport_airplane/accidents/N1819U
Related Documents
Related Questions
University of Babylon
Collage of Engineering\Al-Musayab
Department of Automobile
Engineering
Under Grad/Third stage
Notes:
1-Attempt Four Questions.
2- Q4 Must be Answered
3-Assume any missing data.
4 تسلم الأسئلة بعد الامتحان مع الدفتر
Subject: Mechanical
Element Design I
Date: 2022\01\25
2022-2023
Time: Three Hours
Course 1
Attempt 1
Q1/ Design a thin cylindrical pressure tank (pressure vessel) with hemispherical ends to the
automotive industry, shown in figure I below. Design for an infinite life by finding the
appropriate thickness of the vessel to carry a sinusoidal pressure varied from {(-0.1) to (6) Mpa}.
The vessel is made from Stainless Steel Alloy-Type 316 sheet annealed. The operating
temperature is 80 C° and the dimeter of the cylinder is 36 cm. use a safety factor of 1.8.
Fig. 1
(15 Marks)
Q2/ Answer the following:
1- Derive the design equation for the direct evaluation of the diameter of a shaft to a desired
fatigue safety factor, if the shaft subjected to both fluctuated…
arrow_forward
Course Home
llege.com/course.html?courseld=17313546&OpenVellumHMAC=1c89e19b153e443490bb4df0da3b2ded#10001
to
Review | Constants
pour unistur very unu sıyın
mm nyurve.
Fv = 390 N
Sur
Previous Answers
Mountaineers often use a rope to lower themselves
down the face of a cliff (this is called rappelling). They
do this with their body nearly horizontal and their feet
pushing against the cliff (Eigure 1). Suppose that an
78.6-kg climber, who is 1.88 m tall and has a center of
gravity 1.0 m from his feet, rappels down a vertical cliff
with his body raised 40.4° above the horizontal. He
holds the rope 1.54 m from his feet, and it makes a
20.7° angle with the cliff face.
✓ Correct
Part D
Figure
1 of 1
What minimum coefficient of static friction is needed to prevent the climber's feet from slipping on
the cliff face if he has one foot at a time against the cliff?
Express your answer using two significant figures.
{—| ΑΣΦ
?
fs=
Submit
Provide Feedback
Next >
P Pearson
Copyright © 2022 Pearson…
arrow_forward
Question 7
The following formulas are commonly used by engineers to predict the lift and drag of an airfoil:
where L and Dare the lift and drag forces, V is the airspeed, S is the wing span, is the air density, and CL and CD are the lift and drag coefficients. Both CL and CD depend on α , the angle of attack, the angle between the relative air velocity and the airfoil’s chord line.
Wind tunnel experiments for a particular airfoil have resulted in the following formulas.
where α is in degrees.
arrow_forward
Please asap
arrow_forward
Q1 please
arrow_forward
Answer the following question:
1. What are the different elements of wreckage distribution in an aircraft accident investigation?
arrow_forward
The rapid progress of engineering design and information technology has caused difficulties in analyzing system reliability. Because of the increased complexity in system reliability structure (component/subsystem interfaces), many unexpected failure modes could occur, and their behaviors are interdependent. At a system’s design and development stage, the main challenge in analyzing a complex system is the failure uncertainty introduced by the incomplete knowledge of the system. This makes it hard to decompose system reliability into subsystem/component reliability in a deterministic manner, such as series or parallel systems. As a result, some common reliability analysis tools such as fault tree (FT) and reliability block diagram (RBD) become inadequate. Do you agree, why or why not? Are there any other approaches to system reliability assessment beside these tools at the early system’s design and development stage (what are these approaches)?
arrow_forward
Problem 1: (50 points)
In Avengers 2, Captain America's improved
shield is made from unobtainium, a new
material that will soon be available in a store
near you. Unobtainium has the normal stress-
strain diagram shown. The proportional limit,
the elastic limit and the yield point are
identical in this material.
o [MPa]
2001
175
150
125
100
Fig.1 Normal stress-strain
75
50
25
0
0. 0.05 0.1 0.15 0.2 0.25
Unobtainium has a Poisson's ratio of 0.3.
a. [6pts] Identify the yield point oy, the ultimate stress ou and the fracture
stress of. Include units.
c. [25pts] A bar of unobtainium has a length of
1.5 m, a width of 100mm and a height of 50
mm, as shown. The cross-sectional area is
50mm 100mm = 5 x 10-³m². The bar is
subjected to an axial force of 375 kN.
Find the normal stress in a cross-section of the bar.
b. [5pts] How do you find Young's modulus from this graph? Find its value with units.
whesta fins dus al hoss
P = 375 KN
1.5 m
0.3
50 mm
100 mm
& [mm/mm]
Is the material within its…
arrow_forward
Intro to Transport Processes
TRUE or FALSE. Please provide a quick explanation thanks!
1. Each molecule of a system has a certain quantity of mass, thermal energy, or momentum associated with it.
2. Momentum transport in a fluid depends bulk movement of molecules and not on individual molecule of the system.
3. At same mass, the momentum of a molecule is greater than the other molecules if it has less velocity?
arrow_forward
Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY...
Scores
■Review
Determine the maximum constant speed at which the pilot can travel, so that he experiences a maximum acceleration
an = 8g = 78.5 m/s².
Express your answer to three significant figures and include the appropriate units.
μΑ
v =
Value
Units
Submit
Request Answer
Part B
?
Determine the normal force he exerts on the seat of the airplane when the plane is traveling at this speed and is at its lowest
point.
Express your answer to three significant figures and include the appropriate units.
о
HÅ
N =
Value
Submit
Request Answer
Provide Feedback
?
Units
Next >
arrow_forward
Question 2
You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture
fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates
implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial
weight bearing activities.
Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to
verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into
solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending
test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the
yield stress for the…
arrow_forward
⦁ “God himself could not sink this ship” This is an advertisement for the Titanic, produced in the early 1900s. However, after colliding with an iceberg at dawn on April 15, 1912, two rivers were formed, and out of the 2,200 people on board, 1,500 people, including the captain, sank with the ship. According to a later investigation, the “temperature change theory” (DBTT theory) was the most promising cause of the sinking. Give a brief guess of the cause of the ship's sinking in relation to temperature.
arrow_forward
Match the correct statements about the second
law of thermodynamics.
The Kelvin-Planck
[ Choose ]
statement relates to
V [ Choose ]
The Clausius
statement relates
refrigerators/air
conditioning units/heat
sdund
heat engines
arrow_forward
CHAPTER 5 : DIESEL ENGINE POWER PLANT
A six cylinder, four-stroke CI engine is tested against a water brake dynamometer for which
B.P = WN/17x10' in kW, where W is the brake load in newton and N is the speed of the
engine in the r.p.m. The air consumption was measured by means of a sharp edged orifice.
During the test following observersations were taken :
• Bore
• Stroke
• Speed
• Brake load
Barometer reading
= 10 cm
= 14 cm
= 2500 rpm
= 480 N
= 76 cm Hg
• Orifice diameter
• Co-efficient of discharge of orifice
• Pressure drop across orifice
• Room temperature
Fuel Consumption
= 3.3 cm
= 0.62
= 14 cm of Hg
= 25°C
= 0.32 kg/min
Calculate following :
i.
The volumetric efficiency
The brake mean effective pressure ( b.m.e.p)
The engine torque
The brake specific fuel consumption ( b.s.f.c )
ii.
iv.
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- University of Babylon Collage of Engineering\Al-Musayab Department of Automobile Engineering Under Grad/Third stage Notes: 1-Attempt Four Questions. 2- Q4 Must be Answered 3-Assume any missing data. 4 تسلم الأسئلة بعد الامتحان مع الدفتر Subject: Mechanical Element Design I Date: 2022\01\25 2022-2023 Time: Three Hours Course 1 Attempt 1 Q1/ Design a thin cylindrical pressure tank (pressure vessel) with hemispherical ends to the automotive industry, shown in figure I below. Design for an infinite life by finding the appropriate thickness of the vessel to carry a sinusoidal pressure varied from {(-0.1) to (6) Mpa}. The vessel is made from Stainless Steel Alloy-Type 316 sheet annealed. The operating temperature is 80 C° and the dimeter of the cylinder is 36 cm. use a safety factor of 1.8. Fig. 1 (15 Marks) Q2/ Answer the following: 1- Derive the design equation for the direct evaluation of the diameter of a shaft to a desired fatigue safety factor, if the shaft subjected to both fluctuated…arrow_forwardCourse Home llege.com/course.html?courseld=17313546&OpenVellumHMAC=1c89e19b153e443490bb4df0da3b2ded#10001 to Review | Constants pour unistur very unu sıyın mm nyurve. Fv = 390 N Sur Previous Answers Mountaineers often use a rope to lower themselves down the face of a cliff (this is called rappelling). They do this with their body nearly horizontal and their feet pushing against the cliff (Eigure 1). Suppose that an 78.6-kg climber, who is 1.88 m tall and has a center of gravity 1.0 m from his feet, rappels down a vertical cliff with his body raised 40.4° above the horizontal. He holds the rope 1.54 m from his feet, and it makes a 20.7° angle with the cliff face. ✓ Correct Part D Figure 1 of 1 What minimum coefficient of static friction is needed to prevent the climber's feet from slipping on the cliff face if he has one foot at a time against the cliff? Express your answer using two significant figures. {—| ΑΣΦ ? fs= Submit Provide Feedback Next > P Pearson Copyright © 2022 Pearson…arrow_forwardQuestion 7 The following formulas are commonly used by engineers to predict the lift and drag of an airfoil: where L and Dare the lift and drag forces, V is the airspeed, S is the wing span, is the air density, and CL and CD are the lift and drag coefficients. Both CL and CD depend on α , the angle of attack, the angle between the relative air velocity and the airfoil’s chord line. Wind tunnel experiments for a particular airfoil have resulted in the following formulas. where α is in degrees.arrow_forward
- The rapid progress of engineering design and information technology has caused difficulties in analyzing system reliability. Because of the increased complexity in system reliability structure (component/subsystem interfaces), many unexpected failure modes could occur, and their behaviors are interdependent. At a system’s design and development stage, the main challenge in analyzing a complex system is the failure uncertainty introduced by the incomplete knowledge of the system. This makes it hard to decompose system reliability into subsystem/component reliability in a deterministic manner, such as series or parallel systems. As a result, some common reliability analysis tools such as fault tree (FT) and reliability block diagram (RBD) become inadequate. Do you agree, why or why not? Are there any other approaches to system reliability assessment beside these tools at the early system’s design and development stage (what are these approaches)?arrow_forwardProblem 1: (50 points) In Avengers 2, Captain America's improved shield is made from unobtainium, a new material that will soon be available in a store near you. Unobtainium has the normal stress- strain diagram shown. The proportional limit, the elastic limit and the yield point are identical in this material. o [MPa] 2001 175 150 125 100 Fig.1 Normal stress-strain 75 50 25 0 0. 0.05 0.1 0.15 0.2 0.25 Unobtainium has a Poisson's ratio of 0.3. a. [6pts] Identify the yield point oy, the ultimate stress ou and the fracture stress of. Include units. c. [25pts] A bar of unobtainium has a length of 1.5 m, a width of 100mm and a height of 50 mm, as shown. The cross-sectional area is 50mm 100mm = 5 x 10-³m². The bar is subjected to an axial force of 375 kN. Find the normal stress in a cross-section of the bar. b. [5pts] How do you find Young's modulus from this graph? Find its value with units. whesta fins dus al hoss P = 375 KN 1.5 m 0.3 50 mm 100 mm & [mm/mm] Is the material within its…arrow_forwardIntro to Transport Processes TRUE or FALSE. Please provide a quick explanation thanks! 1. Each molecule of a system has a certain quantity of mass, thermal energy, or momentum associated with it. 2. Momentum transport in a fluid depends bulk movement of molecules and not on individual molecule of the system. 3. At same mass, the momentum of a molecule is greater than the other molecules if it has less velocity?arrow_forward
- Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scores ■Review Determine the maximum constant speed at which the pilot can travel, so that he experiences a maximum acceleration an = 8g = 78.5 m/s². Express your answer to three significant figures and include the appropriate units. μΑ v = Value Units Submit Request Answer Part B ? Determine the normal force he exerts on the seat of the airplane when the plane is traveling at this speed and is at its lowest point. Express your answer to three significant figures and include the appropriate units. о HÅ N = Value Submit Request Answer Provide Feedback ? Units Next >arrow_forwardQuestion 2 You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial weight bearing activities. Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the yield stress for the…arrow_forward⦁ “God himself could not sink this ship” This is an advertisement for the Titanic, produced in the early 1900s. However, after colliding with an iceberg at dawn on April 15, 1912, two rivers were formed, and out of the 2,200 people on board, 1,500 people, including the captain, sank with the ship. According to a later investigation, the “temperature change theory” (DBTT theory) was the most promising cause of the sinking. Give a brief guess of the cause of the ship's sinking in relation to temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY