(a)
Interpretation:
The IUPAC name for the given compound is to be written.
Concept introduction:
The IUPAC name of a compound is made of three parts, prefix, root, and suffix. If the compound contains different
If any chiral carbons are present, their absolute configurations are determined on the basis of Cahn-Ingold-Prelog rules, and listed at the start along with the carbon number.
(b)
Interpretation:
The IUPAC name for the given compound is to be written.
Concept introduction:
The IUPAC name of a compound is made of three parts, prefix, root, and suffix. If the compound contains different functional groups, the highest priority group is determined. This determines the suffix. The longest continuous chain of carbons that contains the highest priority group forms the root. The final ‘e’ in the name of the corresponding alkane is replaced by the suffix corresponding to the highest priority group, except in case of nitriles, when the suffix ‘nitrile’ is simply added to the root name. The position (locant) of the highest priority group on the longest chain is inserted between the root name and the suffix unless redundant. The longest carbon chain is numbered in the direction that gives the highest priority group the lowest possible locant. If the root is a ring, the position of highest priority group is always 1. Any other low priority groups are treated as substituents and listed alphabetically in the prefix along with their locants. In case of rings, the numbering of ring carbons is done in the direction that gives the substituents the lowest possible locants. If more than one instance of any functional group (including highest priority) is present, their numbers are specified by adding a di, tri, etc. to the respective functional group name.
If any chiral carbons are present, their absolute configurations are determined on the basis of Cahn-Ingold-Prelog rules, and listed at the start along with the carbon number.
(c)
Interpretation:
The IUPAC name for the given compound is to be written.
Concept introduction:
The IUPAC name of a compound is made of three parts, prefix, root, and suffix. If the compound contains different functional groups, the highest priority group is determined. This determines the suffix. The longest continuous chain of carbons that contains the highest priority group forms the root. The final ‘e’ in the name of the corresponding alkane is replaced by the suffix corresponding to the highest priority group, except in case of nitriles, when the suffix ‘nitrile’ is simply added to the root name. The position (locant) of the highest priority group on the longest chain is inserted between the root name and the suffix unless redundant. The longest carbon chain is numbered in the direction that gives the highest priority group the lowest possible locant. If the root is a ring, the position of highest priority group is always 1. Any other low priority groups are treated as substituents and listed alphabetically in the prefix along with their locants. In case of rings, the numbering of ring carbons is done in the direction that gives the substituents the lowest possible locants. If more than one instance of any functional group (including highest priority) is present, their numbers are specified by adding a di, tri, etc. to the respective functional group name.
If any chiral carbons are present, their absolute configurations are determined on the basis of Cahn-Ingold-Prelog rules, and listed at the start along with the carbon number.

Want to see the full answer?
Check out a sample textbook solution
Chapter F Solutions
ORGANIC CHEMISTRY PRINCIPLES & MECHANISM
- Identify the missing organic reactants in the following reaction: X + Y H+ two steps Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H2O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Х :arrow_forwardDraw the mechanism of friedel-crafts acylation using acetyl chloride of m-Xylenearrow_forwardI need help naming these in IUPACarrow_forward
- H R Part: 1/2 :CI: is a/an electrophile Part 2 of 2 Draw the skeletal structure of the product(s) for the Lewis acid-base reaction. Include lone pairs and formal charges (if applicable) on the structures. 4-7: H ö- H Skip Part Check X :C1: $ % L Fi Click and drag to start drawing a structure. MacBook Pro & ㅁ x G 0: P Add or increase positive formal cha Save For Later Submit ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centearrow_forwardDraw the friedel-crafts acylation mechanism of m-Xylenearrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- 1. Base on this experimental results, how do you know that the product which you are turning in is methyl 3-nitrobenzoate(meta substituted product ) rather than either of the other two products? 2. What observation suggests that at least a small amount of one or both of the other two isomers are in the mother liquor?arrow_forwardExplain Huckel's rule.arrow_forwardhere is my question can u help me please!arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning




