
Concept explainers
(a)
Interpretation:
Each asymmetric carbon in the given molecule is to be assigned R or S configuration.
Concept introduction:
The four groups attached to an asymmetric carbon are assigned priorities on the basis of the
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation and the designations must be separated from each other by a comma.
(b)
Interpretation:
Each asymmetric carbon in the given molecule is to be assigned R or S configuration.
Concept introduction:
The four groups attached to an asymmetric carbon are assigned priorities on the basis of the atomic number of the atom that is directly attached. In the case of a tie, the atoms one bond away are compared. If the priority groups 1 to 3 are arranged clockwise with the lowest priority group at the back, the asymmetric carbon is assigned an R configuration. If they are arranged counterclockwise, the configuration is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation and the designations must be separated from each other by a comma.
(c)
Interpretation:
Each asymmetric carbon in the given molecule is to be assigned R or S configuration.
Concept introduction:
The four groups attached to an asymmetric carbon are assigned priorities on the basis of the atomic number of the atom that is directly attached. In the case of a tie, the atoms one bond away are compared. If the priority groups 1 to 3 are arranged clockwise with the lowest priority group at the back, the asymmetric carbon is assigned an R configuration. If they are arranged counterclockwise, the configuration is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation and the designations must be separated from each other by a comma.
(d)
Interpretation:
Each asymmetric carbon in the given molecule is to be assigned R or S configuration.
Concept introduction:
The four groups attached to an asymmetric carbon are assigned priorities on the basis of the atomic number of the atom that is directly attached. In the case of a tie, the atoms one bond away are compared. If the priority groups 1 to 3 are arranged clockwise with the lowest priority group at the back, the asymmetric carbon is assigned an R configuration. If they are arranged counterclockwise, the configuration is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation and the designations must be separated from each other by a comma.

Want to see the full answer?
Check out a sample textbook solution
Chapter C Solutions
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
- Can I please get the blank spaces answered/answers?arrow_forward1. Identify the following alkenes as E or Z NH₂ Br 2. Draw the structures based on the IUPAC names (3R,4R)-3-bromo-4-fluoro- 1-hexene (Z)-4-bromo-2-iodo-3-ethyl- 3-heptene تر 3. For the following, predict all possible elimination product(s) and circle the major product. HO H₂SO4 Heat 80 F4 OH H2SO4 Heat 어요 F5 F6 1 A DII 4 F7 F8 F9 % & 5 6 7 * ∞ 8 BAB 3 E R T Y U 9 F D G H J K O A F11 F10arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. ○ O 1. H₂O, pyridine 2. neutralizing work-up a N W X 人 Parrow_forward
- ✓ Check the box under each molecule that has a total of five ẞ hydrogens. If none of the molecules fit this description, check the box underneath the table. tab OH CI 0 Br xx Br None of these molecules have a total of five ẞ hydrogens. esc Explanation Check caps lock shift 1 fn control 02 F2 W Q A N #3 S 80 F3 E $ t 01 205 % 5 F5 & 7 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility FT * 8 R T Y U כ F6 9 FIG F11 F D G H J K L C X V B < N M H option command P H + F12 commandarrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts and the carboxylic acid side product. O 1. CHзMgBr (excess) 2. H₂O ✓ W X 人arrow_forwardIf cyclopentyl acetaldehyde reacts with NaOH, state the product (formula).arrow_forward
- Draw the major product of this reaction. Ignore inorganic byproducts. N S S HgCl2, H2SO4 く 8 W X Parrow_forwardtab esc く Drawing the After running various experiments, you determine that the mechanism for the following reaction occurs in a step-wise fashion. Br + OH + Using this information, draw the correct mechanism in the space below. 1 Explanation Check F2 F1 @2 Q W A os lock control option T S # 3 80 F3 Br $ 4 0105 % OH2 + Br Add/Remove step X C F5 F6 6 R E T Y 29 & 7 F D G H Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce A F7 DII F8 C Ո 8 * 9 4 F10 F C J K L C V Z X B N M H command P ge Coarrow_forwardIndicate compound A that must react with ethylbenzene to obtain 4-ethylbenzene-1-sulfonic acid. 3-bromo-4-ethylbenzene-1-sulfonic acid.arrow_forward
- Part 1 of 2 Draw the structure of A, the minor E1 product of the reaction. esc I Skip Part Check H₂O, D 2 A + Click and drag to start drawing a structure. -0- F1 F2 1 2 # 3 Q A 80 F3 W E S D F4 $ 4 % 5 F5 ㅇ F6 R T Y F G X 5 & 7 + Save 2025 McGraw Hill LLC. All Rights Reserved. DII F7 F8 H * C 80 J Z X C V B N 4 F9 6arrow_forwardFile Preview The following is a total synthesis of the pheromone of the western pine beetle. Such syntheses are interesting both because of the organic chemistry, and because of the possibility of using species specific insecticides, rather than broad band insecticides. Provide the reagents for each step. There is some chemistry from our most recent chapter in this synthesis, but other steps are review from earlier chapters. (8 points) COOEt COOEt A C COOEt COOEt COOH B OH OTS CN D E See the last homework set F for assistance on this one. H+, H₂O G OH OH The last step is just nucleophilic addition reactions, taking the ketone to an acetal, intramolecularly. But it is hard to visualize the three dimensional shape as it occurs. Frontalin, pheromone of the western pine beetlearrow_forwardFor the reaction below: 1. Draw all reasonable elimination products to the right of the arrow. 2. In the box below the reaction, redraw any product you expect to be a major product. C Major Product: Check + ◎ + X ง © Cl I F2 80 F3 I σ F4 I F5 NaOH Click and drawing F6 A 2025 McGraw Hill LLC. All Rights E F7 F8 $ # % & 2 3 4 5 6 7 8 Q W E R T Y U A S D F G H Jarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning

