
Concept explainers
(a)
Interpretation:
The complete IUPAC name of the given molecule is to be determined.
Concept introduction:
A ring compound with a double bond and eight or more carbon atoms can have both E and Z configurations at the double bond. Rings containing seven carbon atoms or less have only Z configuration. The E configuration is too unstable because of a high ring strain. The E/Z designation is generally left out in this case.
The E/Z configuration is determined on the basis of the priorities of the two groups attached to the double bonded carbon atoms. Priority is assigned on the basis of the atomic number of the atom directly bonded to the double bonded carbon. Higher the atomic number, higher the priority. If the
When writing the name, the E/Z designation is written at the start, in parenthesis. If there are two or more double bonds, then they are listed with the respective locants.
If the higher priority groups at the two ends are on the same side of the double bond, then the compound is assigned a Z configuration. If they are on the opposite sides of the double bond, then an E configuration is assigned.
For determining the R/S configuration, the groups attached to the asymmetric center are assigned priorities, following the same rules outlined above. If the groups with priorities 1 to 3 are arranged clockwise with the lowest priority group going away from the observer, the asymmetric center is assigned R configuration. If they are arranged counterclockwise, the configuration assigned is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation, and the designations must be separated from each other by a comma.
(b)
Interpretation:
The complete IUPAC name of the given molecule is to be determined.
Concept introduction:
A ring compound with a double bond and eight or more carbon atoms can have both E and Z configurations at the double bond. Rings containing seven carbon atoms or less have only Z configuration. The E configuration is too unstable because of a high ring strain. The E/Z designation is generally left out in this case.
The E/Z configuration is determined on the basis of the priorities of the two groups attached to the double bonded carbon atoms. Priority is assigned on the basis of the atomic number of the atom directly bonded to the double bonded carbon. Higher the atomic number, higher the priority. If the atomic numbers of both atoms attached to a carbon are the same, then the priority is determined on the basis of the atoms one bond away from the point of attachment.
When writing the name, the E/Z designation is written at the start, in parenthesis. If there are two or more double bonds, then they are listed with the respective locants.
If the higher priority groups at the two ends are on the same side of the double bond, then the compound is assigned a Z configuration. If they are on the opposite sides of the double bond, then an E configuration is assigned.
For determining the R/S configuration, the groups attached to the asymmetric center are assigned priorities, following the same rules outlined above. If the groups with priorities 1 to 3 are arranged clockwise with the lowest priority group going away from the observer, the asymmetric center is assigned R configuration. If they are arranged counterclockwise, the configuration assigned is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation, and the designations must be separated from each other by a comma.
(c)
Interpretation:
The complete IUPAC name of the given molecule is to be determined.
Concept introduction:
A ring compound with a double bond and eight or more carbon atoms can have both E and Z configurations at the double bond. Rings containing seven carbon atoms or less have only Z configuration. The E configuration is too unstable because of a high ring strain. The E/Z designation is generally left out in this case.
The E/Z configuration is determined on the basis of the priorities of the two groups attached to the double bonded carbon atoms. Priority is assigned on the basis of the atomic number of the atom directly bonded to the double bonded carbon. Higher the atomic number, higher the priority. If the atomic numbers of both atoms attached to a carbon are the same, then the priority is determined on the basis of the atoms one bond away from the point of attachment.
When writing the name, the E/Z designation is written at the start, in parenthesis. If there are two or more double bonds, then they are listed with the respective locants.
If the higher priority groups at the two ends are on the same side of the double bond, then the compound is assigned a Z configuration. If they are on the opposite sides of the double bond, then an E configuration is assigned.
For determining the R/S configuration, the groups attached to the asymmetric center are assigned priorities, following the same rules outlined above. If the groups with priorities 1 to 3 are arranged clockwise with the lowest priority group going away from the observer, the asymmetric center is assigned R configuration. If they are arranged counterclockwise, the configuration assigned is S.
When writing the IUPAC name of a molecule, each R and S designation can be written immediately before the first number used to locate the substituent attached to the asymmetric carbon atom. An alternate way is to write all the R and S designations together at the front of the name. The locator number for each asymmetric carbon atom must appear before its R or S designation, and the designations must be separated from each other by a comma.

Want to see the full answer?
Check out a sample textbook solution
Chapter C Solutions
Organic Chemistry: Principles And Mechanisms
- Michael Reactions 19.52 Draw the products from the following Michael addition reactions. 1. H&C CH (a) i 2. H₂O* (b) OEt (c) EtO H₂NEt (d) ΕΙΟ + 1. NaOEt 2. H₂O' H H 1. NaOEt 2. H₂O*arrow_forwardRank the labeled protons (Ha-Hd) in order of increasing acidity, starting with the least acidic. НОН НЬ OHd Онсarrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? ? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C :0 T Add/Remove step Garrow_forward
- The following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forwardA covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forward
- Which one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forwardAll of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
