Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
13th Edition
ISBN: 9780321945525
Author: Raymond A. Barnett, Michael R. Ziegler, Karl E. Byleen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter B.1, Problem 4E
Write the first four terms for each sequence in Problems
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Question 3
over a field K.
In this question, MË(K) denotes the set of n × n matrices
(a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is
equivalent to A-¹? Justify your answer.
(b) Let B be given by
8
B = 0 7 7
0 -7 7
Working over the field F2 with 2 elements, compute the rank of B as an element
of M2(F2).
(c) Let
1
C
-1 1
[4]
[6]
and consider C as an element of M3(Q). Determine the minimal polynomial
mc(x) and hence, or otherwise, show that C can not be diagonalised.
[7]
(d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write
down all the eigenvalues. Show your working.
[8]
16. Solve the given differential equation:
y" + 4y sin (t)u(t 2π),
-
y(0) = 1, y'(0) = 0
Given,
1
(x² + 1)(x²+4)
1/3
-1/3
=
+
x²+1 x² +4
Send your answer in
pen and paper don't r
eputed ur self down
Don't send the same
previous answer that
was Al generated
Don't use any Al tool
show ur answer in pe
n and paper then take
Chapter B Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Ch. B.1 - Write the first four terms of each sequence: (a)...Ch. B.1 - Find the general term of a sequence whose first...Ch. B.1 - Write k=15k+11 Without summation notion. Do not...Ch. B.1 - Write the alternating series 113+19127+181 using...Ch. B.1 - Find the arithmetic mean of 9,3,8,4,3, and 6.Ch. B.1 - Write the first four terms for each sequence in...Ch. B.1 - Write the first four terms for each sequence in...Ch. B.1 - Write the first four terms for each sequence in...Ch. B.1 - Write the first four terms for each sequence in...Ch. B.1 - Write the first four terms for each sequence in...
Ch. B.1 - Write the first four terms for each sequence in...Ch. B.1 - Write the 10th term of the sequence in Problem 1.Ch. B.1 - Write the 15th term of the sequence in Problem 2.Ch. B.1 - Write the 99th term of the sequence in Problem 3.Ch. B.1 - Write the 200th term of the sequence in Problem 4.Ch. B.1 - In Problems 11-16, write each series in expanded...Ch. B.1 - In Problems 11-16, write each series in expanded...Ch. B.1 - In Problems 11-16, write each series in expanded...Ch. B.1 - In Problems 11-16, write each series in expanded...Ch. B.1 - In Problems 11-16, write each series in expanded...Ch. B.1 - In Problems 11-16, write each series in expanded...Ch. B.1 - Find the arithmetic mean of each list of numbers...Ch. B.1 - Find the arithmetic mean of each list of numbers...Ch. B.1 - Find the arithmetic mean of each list of numbers...Ch. B.1 - Find the arithmetic mean of each list of numbers...Ch. B.1 - Write the first five terms of each sequence in...Ch. B.1 - Write the first five terms of each sequence in...Ch. B.1 - Write the first five terms of each sequence in...Ch. B.1 - Write the first five terms of each sequence in...Ch. B.1 - Write the first five terms of each sequence in...Ch. B.1 - Write the first five terms of each sequence in...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - In Problems 27-42, find the general term of a...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 43-50 in expanded...Ch. B.1 - Write each series in Problems 51-54 using...Ch. B.1 - Write each series in Problems 51-54 using...Ch. B.1 - Write each series in Problems 51-54 using...Ch. B.1 - Write each series in Problems 51-54 using...Ch. B.1 - Write each series in Problems 55-58 using...Ch. B.1 - Write each series in Problems 55-58 using...Ch. B.1 - Write each series in Problems 55-58 using...Ch. B.1 - Write each series in Problems 55-58 using...Ch. B.1 - In Problems 59-62, discuss the validity of each...Ch. B.1 - In Problems 59-62, discuss the validity of each...Ch. B.1 - In Problems 59-62, discuss the validity of each...Ch. B.1 - In Problems 59-62, discuss the validity of each...Ch. B.1 - Some sequences are defined by a recursive formula-...Ch. B.1 - Some sequences are defined by a recursive formula-...Ch. B.1 - Some sequences are defined by a recursive formula-...Ch. B.1 - Some sequences are defined by a recursive formula-...Ch. B.1 - If A is a positive real number, the terms pf the...Ch. B.1 - If A is a positive real number, the terms pf the...Ch. B.1 - The sequence defined recursively by...Ch. B.1 - The sequence defined by bn=551+52n is related to...Ch. B.2 - Which of the following can be the first four terms...Ch. B.2 - (A) If the 1st and 15th terms of an arithmetic...Ch. B.2 - Find the sum of the first 40 terms in the...Ch. B.2 - Find the sum of all the odd numbers between 24 and...Ch. B.2 - Find the sum of the first eight terms of the...Ch. B.2 - Repeat Example 6 with a loan of 6,000 over 5...Ch. B.2 - Repeat Example 7 with a tax rebate of 2,000.Ch. B.2 - In Problems 1 and 2, determine whether the...Ch. B.2 - In Problems 1 and 2, determine whether the...Ch. B.2 - In Problems 3-8, determine whether the finite...Ch. B.2 - In Problems 3-8, determine whether the finite...Ch. B.2 - In Problems 3-8, determine whether the finite...Ch. B.2 - In Problems 3-8, determine whether the finite...Ch. B.2 - In Problems 3-8, determine whether the finite...Ch. B.2 - In Problems 3-8, determine whether the finite...Ch. B.2 - Let a1,a2,a3,an, be an arithmetic sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an arithmetic sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an arithmetic sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an arithmetic sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an arithmetic sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an arithmetic sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Let a1,a2,a3,an, be an geometric sequence. In...Ch. B.2 - Find the sum of the odd integers between 12 and 68Ch. B.2 - Find the sum of all the even integers between 23...Ch. B.2 - Find the sum of each infinite geometric sequence...Ch. B.2 - Repeat Problem 31 for: (a) 16,4,1, (b) 1,3,9,Ch. B.2 - Find f1+f2+f3++f50 if fx=2x3.Ch. B.2 - Find g1+g2+g3++g100 if gx=183t.Ch. B.2 - Find f1+f2++f10 if fx=12x.Ch. B.2 - Find g1+g2++g10 if gx=2x.Ch. B.2 - Show that the sum of the first n odd positive...Ch. B.2 - Show that the sum of the first n even positive...Ch. B.2 - If r=1, neither the first form nor the second form...Ch. B.2 - If all of the terms of an infinite geometric...Ch. B.2 - Dose there exist a finite arithmetic series with...Ch. B.2 - Dose there exist a finite arithmetic series with...Ch. B.2 - Does there exist an infinite geometric series with...Ch. B.2 - Dose there exist an infinite geometric series with...Ch. B.2 - Loan repayment. If you borrow $4,800 and repay the...Ch. B.2 - Loan repayment. If you borrow $5,400 and repay the...Ch. B.2 - Economy stimulation. The government, through a...Ch. B.2 - Economy stimulation. Due to reduced taxes, a...Ch. B.2 - Compound interest. If $1,000 is invested at 5...Ch. B.2 - Compound interest. If $P is invested at 100r...Ch. B.3 - Evaluate. (A)4!(B)7!6!(C)8!5!Ch. B.3 - Find A5C2B6C0Ch. B.3 - Use the binomial theorem to expand x+25.Ch. B.3 - Use the binomial theorem to find the fourth term...Ch. B.3 - In Problems 1-20, evaluate each expression. 6!Ch. B.3 - In Problems 1-20, evaluate each expression. 7!Ch. B.3 - In Problems 1-20, evaluate each expression. 10!9!Ch. B.3 - In Problems 1-20, evaluate each expression. 20!19!Ch. B.3 - In Problems 1-20, evaluate each expression. 12!9!Ch. B.3 - In Problems 1-20, evaluate each expression. 10!6!Ch. B.3 - In Problems 1-20, evaluate each expression. 5!2!3!Ch. B.3 - In Problems 1-20, evaluate each expression. 7!3!4!Ch. B.3 - In Problems 1-20, evaluate each expression....Ch. B.3 - In Problems 1-20, evaluate each expression....Ch. B.3 - In Problems 1-20, evaluate each expression....Ch. B.3 - In Problems 1-20, evaluate each expression....Ch. B.3 - In Problems 1-20, evaluate each expression. 5C3Ch. B.3 - In Problems 1-20, evaluate each expression. 7C3Ch. B.3 - In Problems 1-20, evaluate each expression. 6C5Ch. B.3 - In Problems 1-20, evaluate each expression. 7C4Ch. B.3 - In Problems 1-20, evaluate each expression. 5C0Ch. B.3 - In Problems 1-20, evaluate each expression. 5C5Ch. B.3 - In Problems 1-20, evaluate each expression. 18C15Ch. B.3 - In Problems 1-20, evaluate each expression. 18C3Ch. B.3 - Expand each expression in Problems 21-26 using the...Ch. B.3 - Expand each expression in Problems 21-26 using the...Ch. B.3 - Expand each expression in Problems 21-26 using the...Ch. B.3 - Expand each expression in Problems 21-26 using the...Ch. B.3 - Expand each expression in Problems 21-26 using the...Ch. B.3 - Expand each expression in Problems 21-26 using the...Ch. B.3 - Find the indicated term in each expansion in...Ch. B.3 - Find the indicated term in each expansion in...Ch. B.3 - Find the indicated term in each expansion in...Ch. B.3 - Find the indicated term in each expansion in...Ch. B.3 - Find the indicated term in each expansion in...Ch. B.3 - Find the indicated term in each expansion in...Ch. B.3 - Show that nC0=nCnforn0.Ch. B.3 - Show that nCr=nCnrfornr0.Ch. B.3 - The triangle shown here is called Pascal’s...Ch. B.3 - Explain why the sum of the entries in each row of...Ch. B.3 - Explain why the alternating sum of the entries in...Ch. B.3 - Show that nCr=nr+1rnCr1fornr1.Ch. B.3 - Show that nCr1+nCr=n+1Crfornr1.
Additional Math Textbook Solutions
Find more solutions based on key concepts
(z+4)+12
Pre-Algebra Student Edition
Implicit differentiation Use implicit differentiation to find dydx. 13. sin xy = x + y
Calculus: Early Transcendentals (2nd Edition)
CHECK POINT 1 Find a counterexample to show that the statement The product of two two-digit numbers is a three-...
Thinking Mathematically (6th Edition)
IQ Scores. In Exercises 5–8, find the area of the shaded region. The graphs depict IQ scores of adults, and tho...
Elementary Statistics (13th Edition)
The following data were given in a study of a group of 1000 subscribers to a certain magazine: In reference to ...
A First Course in Probability (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardGood explanation it sure experts solve itarrow_forward
- Best explains it not need guidelines okkarrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forward
- Activ Determine compass error using amplitude (Sun). Minimum number of times that activity should be performed: 3 (1 each phase) Sample calculation (Amplitude- Sun): On 07th May 2006 at Sunset, a vessel in position 10°00'N 010°00'W observed the Sun bearing 288° by compass. Find the compass error. LMT Sunset: LIT: (+) 00d 07d 18h 00h 13m 40m UTC Sunset: 07d 18h 53m (added- since longitude is westerly) Declination (07d 18h): N 016° 55.5' d (0.7): (+) 00.6' Declination Sun: N 016° 56.1' Sin Amplitude = Sin Declination/Cos Latitude = Sin 016°56.1'/ Cos 10°00' = 0.295780189 Amplitude=W17.2N (The prefix of amplitude is named easterly if body is rising, and westerly if body is setting. The suffix is named same as declination) True Bearing=287.2° Compass Bearing= 288.0° Compass Error = 0.8° Westarrow_forwardOnly sure experts solve it correct complete solutions okkarrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
The Fundamental Counting Principle; Author: AlRichards314;https://www.youtube.com/watch?v=549eLWIu0Xk;License: Standard YouTube License, CC-BY
The Counting Principle; Author: Mathispower4u;https://www.youtube.com/watch?v=qJ7AYDmHVRE;License: Standard YouTube License, CC-BY