![Applied Physics (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134159386/9780134159386_largeCoverImage.gif)
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter A.2, Problem 3P
Do as indicated. Express the results using positive exponents.
3.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of
nitrogen at a pressure of 1.83×105 Pa and a
temperature of 290 K. The nitrogen may be
treated as an ideal gas. The gas is first compressed
isobarically to half its original volume. It then
expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
Part A
Compute the temperature at the beginning of the adiabatic expansion.
Express your answer in kelvins.
ΕΠΙ ΑΣΦ
T₁ =
?
K
Submit
Request Answer
Part B
Compute the temperature at the end of the adiabatic expansion.
Express your answer in kelvins.
Π ΑΣΦ
T₂ =
Submit
Request Answer
Part C
Compute the minimum pressure.
Express your answer in pascals.
ΕΠΙ ΑΣΦ
P =
Submit
Request Answer
?
?
K
Pa
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Chapter A Solutions
Applied Physics (11th Edition)
Ch. A.1 - Perform the indicated operations. 1. (5)+(6)Ch. A.1 - Prob. 2PCh. A.1 - Prob. 3PCh. A.1 - (+5)+(+7)Ch. A.1 - (5)+(+3)Ch. A.1 - 0+(3)Ch. A.1 - (7)(3)Ch. A.1 - Prob. 8PCh. A.1 - (4)(+2)Ch. A.1 - Prob. 10P
Ch. A.1 - 0(+3)Ch. A.1 - 0(2)Ch. A.1 - Prob. 13PCh. A.1 - (+4)(+6)Ch. A.1 - (7)(+3)Ch. A.1 - (+5)(8)Ch. A.1 - (+6)(0)Ch. A.1 - (0)(4)Ch. A.1 - +36+12Ch. A.1 - 93Ch. A.1 - +162Ch. A.1 - Prob. 22PCh. A.1 - 0+6Ch. A.1 - 40Ch. A.1 - Prob. 25PCh. A.1 - Prob. 26PCh. A.1 - Perform the indicated operations. 27....Ch. A.1 - Perform the indicated operations. 28....Ch. A.1 - Perform the indicated operations. 29. (4)(+5)(4)Ch. A.1 - Perform the indicated operations. 30....Ch. A.1 - Perform the indicated operations. 31....Ch. A.1 - Perform the indicated operations. 32....Ch. A.1 - Perform the indicated operations. 33. (+5)+(2)(+7)Ch. A.1 - Perform the indicated operations. 34....Ch. A.1 - Perform the indicated operations. 35....Ch. A.1 - Perform the indicated operations. 36....Ch. A.1 - Perform the indicated operations. 37. (+3)(5)(+3)Ch. A.1 - Perform the indicated operations. 38....Ch. A.1 - Perform the indicated operations. 39....Ch. A.1 - Perform the indicated operations. 40....Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.3 - Solve each equation. 1. 3x = 4Ch. A.3 - Solve each equation. 2. y2=10Ch. A.3 - Solve each equation. 3. x 5 = 12Ch. A.3 - Solve each equation. 4. x + 1 = 9Ch. A.3 - Solve each equation. 5. 2x + 10 = 10Ch. A.3 - Solve each equation. 6. 4x = 28Ch. A.3 - Solve each equation. 7. 2x 2 = 33Ch. A.3 - Solve each equation. 8. 4=x10Ch. A.3 - Solve each equation. 9. 172 43x = 43Ch. A.3 - Solve each equation. 10. 9x + 7 = 4Ch. A.3 - Solve each equation. 11. 6y 24 = 0Ch. A.3 - Solve each equation. 12. 3y + 15 = 75Ch. A.3 - Solve each equation. 13. 15=105yCh. A.3 - Solve each equation. 14. 6x = x 15Ch. A.3 - Solve each equation. 15. 2=502yCh. A.3 - Solve each equation. 16. 9y = 67.5Ch. A.3 - Solve each equation. 17. 8x 4 = 36Ch. A.3 - Solve each equation. 18. 10=1364xCh. A.3 - Solve each equation. 19. 2x + 22 = 75Ch. A.3 - Solve each equation. 20. 9x + 10 = x 26Ch. A.3 - Solve each equation. 21. 4x + 9 = 7x 18Ch. A.3 - Solve each equation. 22. 2x 4 = 3x +7Ch. A.3 - Solve each equation. 23. 2x + 5 = 3x 10Ch. A.3 - Solve each equation. 24. 5x + 3 = 2x 18Ch. A.3 - Solve each equation. 25. 3x + 5 = 5x 11Ch. A.3 - Solve each equation. 26. 5x + 12 = 12x 5Ch. A.3 - Solve each equation. 27. 13x + 2 = 20x 5Ch. A.3 - Solve each equation. 28. 5x + 3 = 9x 39Ch. A.3 - Solve each equation. 29. 4x + 2 = 10x 20Ch. A.3 - Solve each equation. 30. 9x + 3 = 6x +8Ch. A.3 - Solve each equation. 31. 3x + (2x 7) = 8Ch. A.3 - Solve each equation. 32. 11 (x + 12) = 100Ch. A.3 - Solve each equation. 33. 7x (13 2x) = 5Ch. A.3 - Solve each equation. 34. 20(7x 2) = 240Ch. A.3 - Solve each equation. 35. 3x + 5(x 6) = 12Ch. A.3 - Solve each equation. 36. 3(x + 117) = 201Ch. A.3 - Solve each equation. 37. 5(2x 1) = 8(x + 3)Ch. A.3 - Solve each equation. 38. 3(x + 4) = 8 3(x 2)Ch. A.3 - Solve each equation. 39. 2(3x 2) = 3x 2(5x + 1)Ch. A.3 - Solve each equation. 40. x52(2x5+1)=28Ch. A.4 - Solve each equation. 1. x2 = 36Ch. A.4 - Solve each equation. 2. y2 = 100Ch. A.4 - Solve each equation. 3. 2x2 = 98Ch. A.4 - Solve each equation. 4. 5x2 = 0.05Ch. A.4 - Solve each equation. 5. 3x2 27 = 0Ch. A.4 - Solve each equation. 6. 2y2 15 = 17Ch. A.4 - Solve each equation. 7. 10x2 + 4.9 = 11.3Ch. A.4 - Solve each equation. 8. 2(32)(4815)=v2272Ch. A.4 - Solve each equation. 9. 2(107) = 9.8t2Ch. A.4 - Solve each equation. 10. 65 = r2Ch. A.4 - Solve each equation. 11. 2.50 = r2Ch. A.4 - Solve each equation. 12. 242 = a2 + 162Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Problems A.5 Use right triangle ABC in Fig. A.11...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Draw the mechanism for the reaction of cyclohexene with HCl.
Organic Chemistry (8th Edition)
A sample of nitrogen reacts with chlorine to form of the chloride. What is the empirical formula of the nitro...
Introductory Chemistry (6th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
SYNTHESIZE YOUR KNOWLEDGE Watennelon snow in Antarctica is caused by a species of photosynthetic green algae th...
Campbell Biology (11th Edition)
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- A-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardYour answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward
- 4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Components of a Vector (Part 1) | Unit Vectors | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=fwMUELxZ0Pw;License: Standard YouTube License, CC-BY
02 - Learn Unit Conversions, Metric System & Scientific Notation in Chemistry & Physics; Author: Math and Science;https://www.youtube.com/watch?v=W_SMypXo7tc;License: Standard Youtube License