![Applied Physics (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134159386/9780134159386_largeCoverImage.gif)
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter A.5, Problem 31P
Find each angle rounded to the nearest tenth of a degree.
31. tan B = 1.053
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
No chatgpt pls will upvote
Shown to the right is a block of mass m=5.71kgm=5.71kg on a ramp that makes an angle θ=24.1∘θ=24.1∘ with the horizontal. This block is being pushed by a horizontal force, F=229NF=229N. The coefficient of kinetic friction between the two surfaces is μ=0.51μ=0.51.
Enter an expression for the acceleration of the block up the ramp using variables from the problem statement together with gg for the acceleration due to gravity.
a=
If the density and atomic mass of copper are respectively 8.80 x 103 kg/m³ and 63.5 kg/kmol (note that 1 kmol = 1,000 mol), and copper has one free electron per copper atom, determine the following.
(a) the drift speed of the electrons in a 10 gauge copper wire (2.588 mm in diameter) carrying a 13.5 A current
1.988-4
See if you can obtain an expression for the drift speed of electrons in a copper wire in terms of the current in the wire, the diameter of the wire, the molecular weight and mass density of copper, Avogadro's number, and the charge
on an electron. m/s
(b) the Hall voltage if a 2.68 T field is applied perpendicular to the wire
3.34e-6
x
Can you start with basic equations for the electric and magnetic forces acting on the electrons moving through the wire and obtain a relationship between the magnitude of the electric and magnetic field and the drift speed of the
electrons? How is the magnitude of the electric field related to the Hall voltage and the diameter of the wire? V
Chapter A Solutions
Applied Physics (11th Edition)
Ch. A.1 - Perform the indicated operations. 1. (5)+(6)Ch. A.1 - Prob. 2PCh. A.1 - Prob. 3PCh. A.1 - (+5)+(+7)Ch. A.1 - (5)+(+3)Ch. A.1 - 0+(3)Ch. A.1 - (7)(3)Ch. A.1 - Prob. 8PCh. A.1 - (4)(+2)Ch. A.1 - Prob. 10P
Ch. A.1 - 0(+3)Ch. A.1 - 0(2)Ch. A.1 - Prob. 13PCh. A.1 - (+4)(+6)Ch. A.1 - (7)(+3)Ch. A.1 - (+5)(8)Ch. A.1 - (+6)(0)Ch. A.1 - (0)(4)Ch. A.1 - +36+12Ch. A.1 - 93Ch. A.1 - +162Ch. A.1 - Prob. 22PCh. A.1 - 0+6Ch. A.1 - 40Ch. A.1 - Prob. 25PCh. A.1 - Prob. 26PCh. A.1 - Perform the indicated operations. 27....Ch. A.1 - Perform the indicated operations. 28....Ch. A.1 - Perform the indicated operations. 29. (4)(+5)(4)Ch. A.1 - Perform the indicated operations. 30....Ch. A.1 - Perform the indicated operations. 31....Ch. A.1 - Perform the indicated operations. 32....Ch. A.1 - Perform the indicated operations. 33. (+5)+(2)(+7)Ch. A.1 - Perform the indicated operations. 34....Ch. A.1 - Perform the indicated operations. 35....Ch. A.1 - Perform the indicated operations. 36....Ch. A.1 - Perform the indicated operations. 37. (+3)(5)(+3)Ch. A.1 - Perform the indicated operations. 38....Ch. A.1 - Perform the indicated operations. 39....Ch. A.1 - Perform the indicated operations. 40....Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.3 - Solve each equation. 1. 3x = 4Ch. A.3 - Solve each equation. 2. y2=10Ch. A.3 - Solve each equation. 3. x 5 = 12Ch. A.3 - Solve each equation. 4. x + 1 = 9Ch. A.3 - Solve each equation. 5. 2x + 10 = 10Ch. A.3 - Solve each equation. 6. 4x = 28Ch. A.3 - Solve each equation. 7. 2x 2 = 33Ch. A.3 - Solve each equation. 8. 4=x10Ch. A.3 - Solve each equation. 9. 172 43x = 43Ch. A.3 - Solve each equation. 10. 9x + 7 = 4Ch. A.3 - Solve each equation. 11. 6y 24 = 0Ch. A.3 - Solve each equation. 12. 3y + 15 = 75Ch. A.3 - Solve each equation. 13. 15=105yCh. A.3 - Solve each equation. 14. 6x = x 15Ch. A.3 - Solve each equation. 15. 2=502yCh. A.3 - Solve each equation. 16. 9y = 67.5Ch. A.3 - Solve each equation. 17. 8x 4 = 36Ch. A.3 - Solve each equation. 18. 10=1364xCh. A.3 - Solve each equation. 19. 2x + 22 = 75Ch. A.3 - Solve each equation. 20. 9x + 10 = x 26Ch. A.3 - Solve each equation. 21. 4x + 9 = 7x 18Ch. A.3 - Solve each equation. 22. 2x 4 = 3x +7Ch. A.3 - Solve each equation. 23. 2x + 5 = 3x 10Ch. A.3 - Solve each equation. 24. 5x + 3 = 2x 18Ch. A.3 - Solve each equation. 25. 3x + 5 = 5x 11Ch. A.3 - Solve each equation. 26. 5x + 12 = 12x 5Ch. A.3 - Solve each equation. 27. 13x + 2 = 20x 5Ch. A.3 - Solve each equation. 28. 5x + 3 = 9x 39Ch. A.3 - Solve each equation. 29. 4x + 2 = 10x 20Ch. A.3 - Solve each equation. 30. 9x + 3 = 6x +8Ch. A.3 - Solve each equation. 31. 3x + (2x 7) = 8Ch. A.3 - Solve each equation. 32. 11 (x + 12) = 100Ch. A.3 - Solve each equation. 33. 7x (13 2x) = 5Ch. A.3 - Solve each equation. 34. 20(7x 2) = 240Ch. A.3 - Solve each equation. 35. 3x + 5(x 6) = 12Ch. A.3 - Solve each equation. 36. 3(x + 117) = 201Ch. A.3 - Solve each equation. 37. 5(2x 1) = 8(x + 3)Ch. A.3 - Solve each equation. 38. 3(x + 4) = 8 3(x 2)Ch. A.3 - Solve each equation. 39. 2(3x 2) = 3x 2(5x + 1)Ch. A.3 - Solve each equation. 40. x52(2x5+1)=28Ch. A.4 - Solve each equation. 1. x2 = 36Ch. A.4 - Solve each equation. 2. y2 = 100Ch. A.4 - Solve each equation. 3. 2x2 = 98Ch. A.4 - Solve each equation. 4. 5x2 = 0.05Ch. A.4 - Solve each equation. 5. 3x2 27 = 0Ch. A.4 - Solve each equation. 6. 2y2 15 = 17Ch. A.4 - Solve each equation. 7. 10x2 + 4.9 = 11.3Ch. A.4 - Solve each equation. 8. 2(32)(4815)=v2272Ch. A.4 - Solve each equation. 9. 2(107) = 9.8t2Ch. A.4 - Solve each equation. 10. 65 = r2Ch. A.4 - Solve each equation. 11. 2.50 = r2Ch. A.4 - Solve each equation. 12. 242 = a2 + 162Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Problems A.5 Use right triangle ABC in Fig. A.11...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...
Additional Science Textbook Solutions
Find more solutions based on key concepts
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
A wild-type fruit fly (heterozygous for gray body color and normal wings) is mated with a black fly with vestig...
Campbell Biology (11th Edition)
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
Which culture produces the most lactic acid? Use the following choices to answer questions. a. E. coli growing ...
Microbiology: An Introduction
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk(*) desig...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 0.685 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 0.0084 m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 0.0303 x marrow_forwardTwo charges are placed on the x axis. One of the charges (91 = +6.63 μC) is at x₁ = +3.00 cm and the other (92 = -24.2 μC) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm.arrow_forwardThe diagram shows the all of the forces acting on a body of mass 2.76 kg. The three forces have magnitudes F1 = 65.2 N, F2 = 21.6 N, and F3 = 77.9 N, with directions as indicted in the diagram, where θ = 49.9 degrees and φ = 21.1 degrees. The dashed lines are parallel to the x and y axes. At t = 0, the body is moving at a speed of 6.87 m/s in the positive x direction. a. whats the x component of the acceleration? b. whats the y component of the acceleration? c. whats the speed of the body in m/s at t = 12.3s? d. whats the magnitude of the displacement of the body n meters between t = 0 and 12.3s?arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardA cylinder with a piston contains 0.153 mol of nitrogen at a pressure of 1.83×105 Pa and a temperature of 290 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. Part A Compute the temperature at the beginning of the adiabatic expansion. Express your answer in kelvins. ΕΠΙ ΑΣΦ T₁ = ? K Submit Request Answer Part B Compute the temperature at the end of the adiabatic expansion. Express your answer in kelvins. Π ΑΣΦ T₂ = Submit Request Answer Part C Compute the minimum pressure. Express your answer in pascals. ΕΠΙ ΑΣΦ P = Submit Request Answer ? ? K Paarrow_forward
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. Τ One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward
- 4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardA-e pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
GCSE Physics - Vector Diagrams and Resultant Forces #43; Author: Cognito;https://www.youtube.com/watch?v=U8z8WFhOQ_Y;License: Standard YouTube License, CC-BY
TeachNext | CBSE Grade 10 | Maths | Heights and Distances; Author: Next Education India;https://www.youtube.com/watch?v=b_qm-1jHUO4;License: Standard Youtube License