
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter A.6, Problem 38P
Express the lengths of sides to three significant digits and the angles to the nearest tenth of a degree.
38. B = 19.5°, a = 21.5 ft, c = 12.5 ft
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 04.08 (17 points). Answer the following questions related to the figure below.
ථි
R₁
www
R₂
E
R₁
www
ли
R₁
A Use Kirchhoff's laws to calculate the currents through each battery and resistor in
terms of R1, R2, E1, & E2.
B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2,
which direction is the current flowing through E₁? Through R₂?
C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through
R2?
A 105- and a 45.0-Q resistor are connected in parallel. When this combination is
connected across a battery, the current delivered by the battery is 0.268 A. When the
45.0-resistor is disconnected, the current from the battery drops to 0.0840 A.
Determine (a) the emf and (b) the internal resistance of the battery.
10
R2
R₁
ww
R₁
Emf
14
Emf
Final circuit
Initial circuit
A ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.
Chapter A Solutions
Applied Physics (11th Edition)
Ch. A.1 - Perform the indicated operations. 1. (5)+(6)Ch. A.1 - Prob. 2PCh. A.1 - Prob. 3PCh. A.1 - (+5)+(+7)Ch. A.1 - (5)+(+3)Ch. A.1 - 0+(3)Ch. A.1 - (7)(3)Ch. A.1 - Prob. 8PCh. A.1 - (4)(+2)Ch. A.1 - Prob. 10P
Ch. A.1 - 0(+3)Ch. A.1 - 0(2)Ch. A.1 - Prob. 13PCh. A.1 - (+4)(+6)Ch. A.1 - (7)(+3)Ch. A.1 - (+5)(8)Ch. A.1 - (+6)(0)Ch. A.1 - (0)(4)Ch. A.1 - +36+12Ch. A.1 - 93Ch. A.1 - +162Ch. A.1 - Prob. 22PCh. A.1 - 0+6Ch. A.1 - 40Ch. A.1 - Prob. 25PCh. A.1 - Prob. 26PCh. A.1 - Perform the indicated operations. 27....Ch. A.1 - Perform the indicated operations. 28....Ch. A.1 - Perform the indicated operations. 29. (4)(+5)(4)Ch. A.1 - Perform the indicated operations. 30....Ch. A.1 - Perform the indicated operations. 31....Ch. A.1 - Perform the indicated operations. 32....Ch. A.1 - Perform the indicated operations. 33. (+5)+(2)(+7)Ch. A.1 - Perform the indicated operations. 34....Ch. A.1 - Perform the indicated operations. 35....Ch. A.1 - Perform the indicated operations. 36....Ch. A.1 - Perform the indicated operations. 37. (+3)(5)(+3)Ch. A.1 - Perform the indicated operations. 38....Ch. A.1 - Perform the indicated operations. 39....Ch. A.1 - Perform the indicated operations. 40....Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.2 - Do as indicated. Express the results using...Ch. A.3 - Solve each equation. 1. 3x = 4Ch. A.3 - Solve each equation. 2. y2=10Ch. A.3 - Solve each equation. 3. x 5 = 12Ch. A.3 - Solve each equation. 4. x + 1 = 9Ch. A.3 - Solve each equation. 5. 2x + 10 = 10Ch. A.3 - Solve each equation. 6. 4x = 28Ch. A.3 - Solve each equation. 7. 2x 2 = 33Ch. A.3 - Solve each equation. 8. 4=x10Ch. A.3 - Solve each equation. 9. 172 43x = 43Ch. A.3 - Solve each equation. 10. 9x + 7 = 4Ch. A.3 - Solve each equation. 11. 6y 24 = 0Ch. A.3 - Solve each equation. 12. 3y + 15 = 75Ch. A.3 - Solve each equation. 13. 15=105yCh. A.3 - Solve each equation. 14. 6x = x 15Ch. A.3 - Solve each equation. 15. 2=502yCh. A.3 - Solve each equation. 16. 9y = 67.5Ch. A.3 - Solve each equation. 17. 8x 4 = 36Ch. A.3 - Solve each equation. 18. 10=1364xCh. A.3 - Solve each equation. 19. 2x + 22 = 75Ch. A.3 - Solve each equation. 20. 9x + 10 = x 26Ch. A.3 - Solve each equation. 21. 4x + 9 = 7x 18Ch. A.3 - Solve each equation. 22. 2x 4 = 3x +7Ch. A.3 - Solve each equation. 23. 2x + 5 = 3x 10Ch. A.3 - Solve each equation. 24. 5x + 3 = 2x 18Ch. A.3 - Solve each equation. 25. 3x + 5 = 5x 11Ch. A.3 - Solve each equation. 26. 5x + 12 = 12x 5Ch. A.3 - Solve each equation. 27. 13x + 2 = 20x 5Ch. A.3 - Solve each equation. 28. 5x + 3 = 9x 39Ch. A.3 - Solve each equation. 29. 4x + 2 = 10x 20Ch. A.3 - Solve each equation. 30. 9x + 3 = 6x +8Ch. A.3 - Solve each equation. 31. 3x + (2x 7) = 8Ch. A.3 - Solve each equation. 32. 11 (x + 12) = 100Ch. A.3 - Solve each equation. 33. 7x (13 2x) = 5Ch. A.3 - Solve each equation. 34. 20(7x 2) = 240Ch. A.3 - Solve each equation. 35. 3x + 5(x 6) = 12Ch. A.3 - Solve each equation. 36. 3(x + 117) = 201Ch. A.3 - Solve each equation. 37. 5(2x 1) = 8(x + 3)Ch. A.3 - Solve each equation. 38. 3(x + 4) = 8 3(x 2)Ch. A.3 - Solve each equation. 39. 2(3x 2) = 3x 2(5x + 1)Ch. A.3 - Solve each equation. 40. x52(2x5+1)=28Ch. A.4 - Solve each equation. 1. x2 = 36Ch. A.4 - Solve each equation. 2. y2 = 100Ch. A.4 - Solve each equation. 3. 2x2 = 98Ch. A.4 - Solve each equation. 4. 5x2 = 0.05Ch. A.4 - Solve each equation. 5. 3x2 27 = 0Ch. A.4 - Solve each equation. 6. 2y2 15 = 17Ch. A.4 - Solve each equation. 7. 10x2 + 4.9 = 11.3Ch. A.4 - Solve each equation. 8. 2(32)(4815)=v2272Ch. A.4 - Solve each equation. 9. 2(107) = 9.8t2Ch. A.4 - Solve each equation. 10. 65 = r2Ch. A.4 - Solve each equation. 11. 2.50 = r2Ch. A.4 - Solve each equation. 12. 242 = a2 + 162Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Find the values of a, b, and c, in each quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.4 - Solve each quadratic equation using the quadratic...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Problems A.5 Use right triangle ABC in Fig. A.11...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use right triangle ABC in Fig. A.11 to fill in...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Use a calculator to find each trigonometric ratio...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest whole...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest tenth of a...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Find each angle rounded to the nearest hundredth...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Solve each triangle (find the missing angles and...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.5 - Find the missing side in each right triangle using...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - For each general triangle, (a) determine the...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to three significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to two significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...Ch. A.6 - Express the lengths of sides to four significant...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q5. Convert to K.
a) 181.1 K
b) 358 K
c) 29.4 K
d) 302.6 K
Chemistry: A Molecular Approach (4th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
GCSE Physics - Vector Diagrams and Resultant Forces #43; Author: Cognito;https://www.youtube.com/watch?v=U8z8WFhOQ_Y;License: Standard YouTube License, CC-BY
TeachNext | CBSE Grade 10 | Maths | Heights and Distances; Author: Next Education India;https://www.youtube.com/watch?v=b_qm-1jHUO4;License: Standard Youtube License