Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
Question
Book Icon
Chapter A1, Problem A1.12QAP
Interpretation Introduction

Interpretation:

The table for sets of the replicate measurements is given below-

A B C D E F
3.5 70.24 0.812 2.7 70.65 0.514
3.1 70.22 0.792 3.0 70.63 0.503
3.1 70.10 0.794 2.6 70.64 0.486
3.3 0.900 2.8 70.21 0.497
2.5 3.2 0.472

The value of mean and standard deviation is to be calculated for the above data sets. The 95% confidence interval for each data is to be determined and the value of interval mean is also to be determined.

Concept introduction:

The formula for the mean is given as-

mean(x¯)=A1+A+2....................+AnN=xiN .................. (1)

The formula for the standard deviation is given as-

standard deviation=(xx¯)2N1 ..................….. (2)

Expert Solution & Answer
Check Mark

Answer to Problem A1.12QAP

For set A −

Mean= 3.1

Standard deviation = 0.37

95% degree interval = ±0.46

For set B −

Mean= 70.19

Standard deviation = 0.08

95% degree interval = ±0.20

For set C −

Mean= 0.82

Standard deviation = 0.05

95% degree interval = ±0.80

For set D −

Mean= 2.86

Standard deviation = 0.25

95% degree interval = ±0.31

For set E −

Mean= 70.53

Standard deviation = 0.22

95% degree interval = ±0.35

For set F −

Mean= 0.494

Standard deviation = 0.016

95% degree interval = ±0.020

Explanation of Solution

The formula that will be used-

mean(x¯)=A1+A+2....................+AnN=xiN

standard deviation=(xx¯)2N1

CI,μ=x¯±tsN

Therefore, mean value of set A −

mean(x¯)=3.5+3.1+3.1+3.3+2.55=3.1

The standard deviation for the set A is calculated as-

Set A xi xi2
1 3.5 12.25
2 3.1 9.61
3 3.1 9.61
4 3.3 10.89
5 2.5 6.25
xi = 15.5 (xi)2 = 48.61

From above table-

(48.61)25=240.255=48.05

The standard deviation for the set A is calculated as-

s=48.6148.0551

s=0.564=0.37

Similarly for set B-

Therefore mean value of set B −

mean(x¯)=70.24+70.22+70.103=70.19

The standard deviation for the set A is calculated as-

Set A xi xi2
1 70.24 4933.6576
2 70.22 4930.8484
3 70.10 4914.01
xi = 210.56 (xi)2 = 14778.516

From above table-

(210.56)23=44335.51363=14778.504

The standard deviation for the set A is calculated as-

s=14778.51614778.50431

s=0.0122=0.0770.08

Similarly for set C-

Therefore mean value of set C −

mean(x¯)=0.812+0.792+0.794+0.9004=0.82

The standard deviation for the set C is calculated as-

Set C xi xi2
1 0.812 0.659344
2 0.792 0.627264
3 0.794 0.630436
4 0.900 0.81
xi = 3.298 (xi)2 = 2.727044

From above table-

(3.298)24=10.8768044=2.719201

The standard deviation for the set C is calculated as-

s=2.7270442.71920141

s=0.0078433=0.05

Similarly for set D-

Therefore mean value of set D −

mean(x¯)=2.7+3.0+2.6+2.8+3.25=2.86

The standard deviation for the set D is calculated as-

Set D xi xi2
1 2.7 7.29
2 3.0 9.00
3 2.6 6.79
4 2.8 7.64
5 3.2 10.24
xi = 14.3 (xi)2 = 41.16

From above table-

(14.3)25=204.495=40.898

The standard deviation for the set A is calculated as-

s=41.1640.89851

s=0.2624=0.25

Similarly for set E-

Therefore mean value of set E −

mean(x¯)=70.65+70.63+70.64+70.214=70.53

The standard deviation for the set E is calculated as-

Set E xi xi2
1 70.65 4991.4225
2 70.63 4988.5969
3 70.64 4990.0096
4 70.21 4929.4441
xi = 282.13 (xi)2 = 19899.4731

From above table-

(282.13)24=79597.33694=19899.3342

The standard deviation for the set A is calculated as-

s=19899.473119899.334241

s=0.13893=0.2150.22

Similarly for set F-

Therefore mean value of set F −

mean(x¯)=0.514+0.503+0.486+0.497+0.4725=0.494

The standard deviation for the set F is calculated as-

Set A xi xi2
1 0.514 0.264196
2 0.503 0.253009
3 0.486 0.236196
4 0.497 0.247009
5 0.472 0.222784
xi = 210.56 (xi)2 = 1.223194

From above table-

(210.56)23=44335.51363=14778.504

The standard deviation for the set F is calculated as-

s=1.2231941.22215651

s=0.0010384=0.016

The 95% confidence interval for each data is calculated as-

CI,μ=x¯±tsN ................... Equ (3)

Where,

N = degree of freedom

μ = confidence interval

x¯ = mean

s = standard deviation

The value of t-

Degree of freedom 95%
1 12.7
2 4.30
3 3.18
4 2.78
5 2.57

For set A-

Given that-

N = 5

x¯ = 3.1

s = 0.37

t = 2.78

Put the above values in Equ (3)

CI,μ=3.1±2.78×0.375

CI,μ=3.1±0.46

confidence interval(A)=±0.46

For set B-

Given that-

N = 3

x¯ = 70.19

s = 0.08

t = 4.30

Put the above values in Equ (3)

CI,μ=70.19±4.30×0.083

CI,μ=70.19±0.1970.19±0.20

confidence interval(B)=±0.20

For set C-

Given that-

N = 4

x¯ = 0.82

s = 0.05

t = 3.18

Put the above values in Equ (3)

CI,μ=0.82±3.18×0.054

CI,μ=0.82±0.7950.82±0.80

confidence interval(C)=±0.80

For set D-

Given that-

N = 5

x¯ = 2.86

s = 0.25

t = 2.78

Put the above values in Equ (3)

CI,μ=2.86±2.78×0.255

CI,μ=2.86±0.31

confidence interval(D)=±0.31

For set E-

Given that-

N = 4

x¯ = 70.53

s = 0.22

t = 3.18

Put the above values in Equ (3)

CI,μ=70.53±3.18×0.224

CI,μ=70.53±0.35

confidence interval(E)=±0.35

For set F-

Given that-

N = 5

x¯ = 0.494

s = 0.016

t = 2.78

Put the above values in Equ (3)

CI,μ=0.494±2.78×0.0165

CI,μ=0.494±0.020

confidence interval(F)=±0.020

Conclusion

Thus, this can be concluded that the results for each set are obtained by using the mean standard deviation and 95% confidence interval formula. Therefore,

For set A −

Mean= 3.1

Standard deviation = 0.37

95% degree interval = ±0.46

For set B −

Mean= 70.19

Standard deviation = 0.08

95% degree interval = ±0.20

For set C −

Mean= 0.82

Standard deviation = 0.05

95% degree interval = ±0.80

For set D −

Mean= 2.86

Standard deviation = 0.25

95% degree interval = ±0.31

For set E −

Mean= 70.53

Standard deviation = 0.22

95% degree interval = ±0.35

For set F −

Mean= 0.494

Standard deviation = 0.016

95% degree interval = ±0.020

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The gold content of an ore is being measured. The results of these analyses are:  Content (ppt) 20.065 19.999 21.054 20.533 20.088 20.112 What is the average value, standard deviation and confidence interval for this set of data?Show each step of the calculation. Using your results calculate the %accuracy and %precision (relative standard deviation) if the true value is 20.045%.
Consider the following sets of replicate measurements: Calculate the mean and the standard deviation for each of these six data sets. Calculate the 95% confidence interval for each set of data. What does this interval mean?
You measure 35 turtles' weights, and find they have a mean weight of 72 ounces. Assume the population standard deviation is 3.1 ounces. Based on this, construct a 99% confidence interval for the true population mean turtle weight. Give your answers as decimals, to two places ounces
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Appl Of Ms Excel In Analytical Chemistry
Chemistry
ISBN:9781285686691
Author:Crouch
Publisher:Cengage
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning