Principles of Instrumental Analysis, 6th Edition
Principles of Instrumental Analysis, 6th Edition
6th Edition
ISBN: 9788131525579
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cenage Learning
Question
Book Icon
Chapter A1, Problem A1.10QAP
Interpretation Introduction

(a)

Interpretation:

Absolute standard deviation and the coefficient of variation are to be determined for the given data.

y=(5.75)(±0.03)+(0.833)(±0.001)(8.021)(±0.001)

=-1.4381

Concept introduction:

The spreading out of numbers is measured by the standard deviation which is symbolized by s. The standard deviation can be calculated by taking the square root of the variance. Relative standard deviation is known as the coefficient of variation represented as cv. It is calculated in percentage. It is calculated as the ratio of standard deviation and the mean.

Interpretation Introduction

(b)

Interpretation:

Absolute standard deviation and the coefficient of variation are to be determined for the given data.

y=(18.97)(±0.04)+(0.0025)(±0.0001)+(2.29)(±0.08)

=21.2625

Concept introduction:

The spreading out of numbers is measured by the standard deviation which is symbolized by s. The standard deviation can be calculated by taking the square root of the variance. Relative standard deviation is known as the coefficient of variation represented as cv. It is calculated in percentage. It is calculated as the ratio of standard deviation and the mean.

Interpretation Introduction

(c)

Interpretation:

Absolute standard deviation and the coefficient of variation are to be determined for the given data.

y=(66.2)(±0.03)×[(1.13)(±0.02)×1017]=7.4806×1016

.

Concept introduction:

The spreading out of numbers is measured by the standard deviation which is symbolized by s. The standard deviation can be calculated by taking the square root of the variance. Relative standard deviation is known as the coefficient of variation represented as cv. It is calculated in percentage. It is calculated as the ratio of standard deviation and the mean.

Interpretation Introduction

(d)

Interpretation:

Absolute standard deviation and the coefficient of variation are to be determined for the given data.

y=(251)(±1)×[(860)×(±2)][1.673×(±0.006)]=129050.70

Concept introduction:

The spreading out of numbers is measured by the standard deviation which is symbolized by s. The standard deviation can be calculated by taking the square root of the variance. Relative standard deviation is known as the coefficient of variation represented as cv. It is calculated in percentage. It is calculated as the ratio of standard deviation and the mean.

Interpretation Introduction

(e)

Interpretation:

Absolute standard deviation and the coefficient of variation are to be determined for the given data.

y=(157)(±6)1,220(±1)+[(59)×(±3)][77×(±8)]=7.5559×102

Concept introduction:

The spreading out of numbers is measured by the standard deviation which is symbolized by s. The standard deviation can be calculated by taking the square root of the variance. Relative standard deviation is known as the coefficient of variation represented as cv. It is calculated in percentage. It is calculated as the ratio of standard deviation and the mean.

Interpretation Introduction

(f)

Interpretation:

Absolute standard deviation and the coefficient of variation are to be determined for the given data.

y=(1.97)±(0.01)243±3=8.106996×103

Concept introduction:

The spreading out of numbers is measured by the standard deviation which is symbolized by s. The standard deviation can be calculated by taking the square root of the variance. Relative standard deviation is known as the coefficient of variation represented as cv. It is calculated in percentage. It is calculated as the ratio of standard deviation and the mean.

Blurred answer
Students have asked these similar questions
None
n Feb 3 A T + 4. (2 pts) Draw the structure of the major component of the Limonene isolated. Explain how you confirmed the structure. 5. (2 pts) Draw the fragment corresponding to the base peak in the Mass spectrum of Limonene. 6. (1 pts) Predict the 1H NMR spectral data of R-Limonene. Proton NMR: 5.3 pon multiplet (H Ring
Part VI. Ca H 10 O is the molecular formula of compound Tom and gives the in the table below. Give a possible structure for compound Tom. 13C Signals summarized C1 C2 C3 C4 C5 C6 C7 13C shift (ppm) 23.5 27.0 33.0 35.8 127 162 205 DEPT-90 + DEPT-135 + +
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Appl Of Ms Excel In Analytical Chemistry
Chemistry
ISBN:9781285686691
Author:Crouch
Publisher:Cengage
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning