a)

Interpretation:
How to carry out the reaction given which yields deuterium incorporated alkene as the product is to be shown.
Concept introduction:
Deuterium incorporated
To show:
How to carry out the reaction given which yields deuterium incorporated alkene as the product.
b)

Interpretation:
How to carry out the reaction given which yields deuterium incorporated alkene as the product is to be shown.
Concept introduction:
Deuterium incorporated alkenes can be prepared from alkynes by reduction in the presence of catalysts. Use of deuterium in the presence of Lindlar catalyst yields cis alkenes with the two deuterium atoms arranged on the same side of the double bond while reduction with Li in liquid deuterated ammonia yields trans alkenes with the two deuterium atoms arranged on the opposite sides of the double bond.
To show:
How to carry out the reaction given which yields deuterium incorporated alkene as the product.
c)

Interpretation:
How to carry out the reaction given which yields deuterium incorporated alkyne as the product is to be shown.
Concept introduction:
Deuterium incorporated alkynes can be prepared first by converting them in to alkynides by treating with NaNH2 in NH3 and then treating the alkynide obtained with D3O+.
To show:
How to carry out the reaction given which yields deuterium incorporated alkyne as the product.
d)

Interpretation:
How to carry out the reaction given which yields deuterium incorporated alkene as the product is to be shown.
Concept introduction:
Deuterium incorporated alkynes can be prepared first by converting them in to alkynides by treating with NaNH2 in NH3 and then treating the alkynide obtained with D3O+. The alkyne thus obtained when treated with deuterium in the presence of Lindlar catalyst yield an alkene with deuterium atom on both carbons.
To show:
How to carry out the reaction given which yields deuterium incorporated alkene as the product.

Trending nowThis is a popular solution!

Chapter 9 Solutions
EP ORGANIC CHEMISTRY,24 MONTH-OWLV2
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningMacroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks Cole



