
Using & Understanding Mathematics: A Quantitative Reasoning Approach (7th Edition)
7th Edition
ISBN: 9780134705187
Author: Jeffrey O. Bennett, William L. Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.C, Problem 45E
To determine
The density of the substance when it was deposited years ago, if a toxic radioactive substance with a density of milligrams per square centimeter is detected in the ventilating ducts of a nuclear processing building that was used years ago, where the half-life of the substance is years.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The accompanying data shows the fossil fuels production, fossil fuels consumption, and total energy consumption in quadrillions of BTUs of a certain region for the years 1986 to 2015. Complete parts a and b.
Year Fossil Fuels Production Fossil Fuels Consumption Total Energy Consumption1949 28.748 29.002 31.9821950 32.563 31.632 34.6161951 35.792 34.008 36.9741952 34.977 33.800 36.7481953 35.349 34.826 37.6641954 33.764 33.877 36.6391955 37.364 37.410 40.2081956 39.771 38.888 41.7541957 40.133 38.926 41.7871958 37.216 38.717 41.6451959 39.045 40.550 43.4661960 39.869 42.137 45.0861961 40.307 42.758 45.7381962 41.732 44.681 47.8261963 44.037 46.509 49.6441964 45.789 48.543 51.8151965 47.235 50.577 54.0151966 50.035 53.514 57.0141967 52.597 55.127 58.9051968 54.306 58.502 62.4151969 56.286…
The accompanying data shows the fossil fuels production, fossil fuels consumption, and total energy consumption in quadrillions of BTUs of a certain region for the years 1986 to 2015. Complete parts a and b.
Develop line charts for each variable and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical).
What is the line chart for the variable Fossil Fuels Production?
The accompanying data shows the fossil fuels production, fossil fuels consumption, and total energy consumption in quadrillions of BTUs of a certain region for the years 1986 to 2015. Complete parts a and b.
Year Fossil Fuels Production Fossil Fuels Consumption Total Energy Consumption1949 28.748 29.002 31.9821950 32.563 31.632 34.6161951 35.792 34.008 36.9741952 34.977 33.800 36.7481953 35.349 34.826 37.6641954 33.764 33.877 36.6391955 37.364 37.410 40.2081956 39.771 38.888 41.7541957 40.133 38.926 41.7871958 37.216 38.717 41.6451959 39.045 40.550 43.4661960 39.869 42.137 45.0861961 40.307 42.758 45.7381962 41.732 44.681 47.8261963 44.037 46.509 49.6441964 45.789 48.543 51.8151965 47.235 50.577 54.0151966 50.035 53.514 57.0141967 52.597 55.127 58.9051968 54.306 58.502 62.4151969 56.286…
Chapter 9 Solutions
Using & Understanding Mathematics: A Quantitative Reasoning Approach (7th Edition)
Ch. 9.A - Prob. 1QQCh. 9.A - Prob. 2QQCh. 9.A - Prob. 3QQCh. 9.A - Prob. 4QQCh. 9.A - 5. When you nuke a graph of the function \[z =...Ch. 9.A - 6. The values taken on by the dependent variable...Ch. 9.A - 7. Consider a function that describes how a...Ch. 9.A - Prob. 8QQCh. 9.A - Prob. 9QQCh. 9.A - 10. Suppose that two groups of scientists have...
Ch. 9.A - Prob. 1ECh. 9.A - Prob. 2ECh. 9.A - Prob. 3ECh. 9.A - Prob. 4ECh. 9.A - Prob. 5ECh. 9.A - Prob. 6ECh. 9.A - Prob. 7ECh. 9.A - 8. My mathematical model fits the data perfectly,...Ch. 9.A - Coordinate Plane Review. Use the skills covered in...Ch. 9.A - 9-10: Coordinate Plane Review. Use the skills...Ch. 9.A - Identifying Functions. In each of the following...Ch. 9.A - Prob. 12ECh. 9.A - Prob. 13ECh. 9.A - Identifying Functions. In each of the following...Ch. 9.A - Prob. 15ECh. 9.A - Prob. 16ECh. 9.A - Related Quantities. Write a short statement that...Ch. 9.A - Prob. 18ECh. 9.A - Prob. 19ECh. 9.A - Related Quantities. Write a short statement that...Ch. 9.A - Related Quantities. Write a short statement that...Ch. 9.A - 15-22: Related Quantities. Write a short statement...Ch. 9.A - 23. Pressure Function. Study Figure 9.6.
Use the...Ch. 9.A - Prob. 24ECh. 9.A - Prob. 25ECh. 9.A - Prob. 26ECh. 9.A - 25-26: Functions from Graphs. Consider the graphs...Ch. 9.A - Prob. 28ECh. 9.A - 27-30: Functions from Data Tables. Each of the...Ch. 9.A - Prob. 30ECh. 9.A - Prob. 31ECh. 9.A - Prob. 32ECh. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - 31-42: Rough Sketches of Functions. For each...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Prob. 39ECh. 9.A - Prob. 40ECh. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Prob. 42ECh. 9.A - Everyday Models. Describe three different models...Ch. 9.A - 44. Functions and Variables in the News. Identity...Ch. 9.A - Prob. 45ECh. 9.A - 46. Variable Tables. Find data on the Web (or two...Ch. 9.B - A linear function is characterized by an...Ch. 9.B - You have a graph of a linear function. To...Ch. 9.B - The graph of a linear function is sloping downward...Ch. 9.B - Suppose that Figure 9. 11 is an accurate...Ch. 9.B - Which town would have the steepest slope on a...Ch. 9.B - Consider the function price = $100 - ( $3/yr) ×...Ch. 9.B - Consider the demand function given in Example 6,...Ch. 9.B - A line intersects the y-axis at a value of y = 7...Ch. 9.B - Consider a line with equation \[y = 12x - 3\]....Ch. 9.B - Charlie picks apples in the orchard at a constant...Ch. 9.B - What does it mean to say that a function is...Ch. 9.B - Prob. 2ECh. 9.B - How is the rate of change of a linear function...Ch. 9.B - 4. How do you find the change in the dependent...Ch. 9.B - 3. Describe the general equation for a linear...Ch. 9.B - Prob. 6ECh. 9.B - When I graphed the linear function, it turned out...Ch. 9.B - I graphed two linear functions, and the one with...Ch. 9.B - My freeway speed is the rate of change in my...Ch. 9.B - It's possible to make a linear model from any two...Ch. 9.B - Linear Functions. Consider the following graphs....Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - Linear Functions. Consider the following graphs a....Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - 17-22: Rate of Change Rule. The following...Ch. 9.B - 17-22: Rate of Change Rule. The following...Ch. 9.B - 17-22: Rate of Change Rule. The following...Ch. 9.B - Prob. 20ECh. 9.B - Prob. 21ECh. 9.B - Prob. 22ECh. 9.B - 23-20: Linear Equations. The following situations...Ch. 9.B - Prob. 24ECh. 9.B - 23-20: Linear Equations. The following situations...Ch. 9.B - Prob. 26ECh. 9.B - 23-28: Linear Equations. The following situations...Ch. 9.B - 23-28: linear Equations. The following situations...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - Equations from Two Data Points. Create the...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - Prob. 34ECh. 9.B - Prob. 35ECh. 9.B - Prob. 36ECh. 9.B - Prob. 37ECh. 9.B - Prob. 38ECh. 9.B - Prob. 39ECh. 9.B - 35-42: Algebraic Linear Equations. For the...Ch. 9.B - 35-42: Algebraic Linear Equations. For the...Ch. 9.B - Algebraic Linear Equations. For the following...Ch. 9.B - Linear Graphs. The following situations can be...Ch. 9.B - Prob. 44ECh. 9.B - Linear Graphs. The following situations can be...Ch. 9.B - Prob. 46ECh. 9.B - Prob. 47ECh. 9.B - Prob. 48ECh. 9.B - Wildlife Management. A common technique for...Ch. 9.B - Linear Models. Describe at least two situations...Ch. 9.B - 51. Nonlinear Models. Describe at least one...Ch. 9.B - Alcohol Metabolism. Most drugs are eliminated from...Ch. 9.B - Properly Depreciation. Go to the IRS website, and...Ch. 9.C - Which statement is true about exponential growth?...Ch. 9.C - A city's population starts at 100,000 people and...Ch. 9.C - A city’s population suns at 100,000 people and...Ch. 9.C - India’s 2017 population was estimated to be 1.34...Ch. 9.C - Suppose that inflation causes the value of a...Ch. 9.C - Figure 9.18(b) shows the graph of an exponentially...Ch. 9.C - Polly received a large dose of an antibiotic and...Ch. 9.C - The half-life of carbon-14 is 5700 years, and...Ch. 9.C - Radioactive uranium-235 has a half-life of about...Ch. 9.C - Compare the list two forms of the exponential...Ch. 9.C - Prob. 1ECh. 9.C - Prob. 2ECh. 9.C - 3. Describe how you tan graph an exponential...Ch. 9.C - 4. Describe the meaning of each of the three forms...Ch. 9.C - Prob. 5ECh. 9.C - Prob. 6ECh. 9.C - After 100 years, a population growing at a rate of...Ch. 9.C - When 1 used the exponential function in model the...Ch. 9.C - We can use the hurt that radioactive materials...Ch. 9.C - I used the exponential function to figure how much...Ch. 9.C - Review of logarithms. Use the skills coveted in...Ch. 9.C - Prob. 12ECh. 9.C - Prob. 13ECh. 9.C - Prob. 14ECh. 9.C - Review of logarithms. Use the skills coveted in...Ch. 9.C - 11-26: Review of logarithms. Use the skills...Ch. 9.C - 11-26: Review of logarithms. Use the skills...Ch. 9.C - 11-26: Review of logarithms. Use the skills...Ch. 9.C - Review of logarithms. Use the skills coveted in...Ch. 9.C - Prob. 20ECh. 9.C - Prob. 21ECh. 9.C - Prob. 22ECh. 9.C - Prob. 23ECh. 9.C - Prob. 24ECh. 9.C - Prob. 25ECh. 9.C - Prob. 26ECh. 9.C - 27-34. Exponential growth and decay laws. Consider...Ch. 9.C - 27-34: Exponential growth and decay laws. Consider...Ch. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - Prob. 32ECh. 9.C - Prob. 33ECh. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - Annual vs. Monthly Inflation. Answer the following...Ch. 9.C - Annual vs. Monthly Inflation. Answer the following...Ch. 9.C - Hyperinflation in Germany. In 1923, Germany...Ch. 9.C - Prob. 38ECh. 9.C - 39. Extinction by Poaching. Suppose that poaching...Ch. 9.C - World Oil Production. Annual world oil production...Ch. 9.C - Prob. 41ECh. 9.C - Aspirin Metabolism. Assume that for the average...Ch. 9.C - Prob. 43ECh. 9.C - Prob. 44ECh. 9.C - Prob. 45ECh. 9.C - Metropolitan Population Growth. A small city had a...Ch. 9.C - Rising Home Prices. In 2000, the median home price...Ch. 9.C - Periodic Drug Doses. It is common to take a drug...Ch. 9.C - 49. Increasing Atmospheric Carbon Dioxide. Direct...Ch. 9.C - Prob. 50ECh. 9.C - Inflation Rate in the News. Find a news report...Ch. 9.C - Prob. 52ECh. 9.C - Radiometric Dating in the News. Find a news report...Ch. 9.C - Prob. 54ECh. 9.C - Prob. 55E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- For each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical). Month PercentApr 1972 4.97May 1972 5.00Jun 1972 5.04Jul 1972 5.25Aug 1972 5.27Sep 1972 5.50Oct 1972 5.73Nov 1972 5.75Dec 1972 5.79Jan 1973 6.00Feb 1973 6.02Mar 1973 6.30Apr 1973 6.61May 1973 7.01Jun 1973 7.49Jul 1973 8.30Aug 1973 9.23Sep 1973 9.86Oct 1973 9.94Nov 1973 9.75Dec 1973 9.75Jan 1974 9.73Feb 1974 9.21Mar 1974 8.85Apr 1974 10.02May 1974 11.25Jun 1974 11.54Jul 1974 11.97Aug 1974 12.00Sep 1974 12.00Oct 1974 11.68Nov 1974 10.83Dec 1974 10.50Jan 1975 10.05Feb 1975 8.96Mar 1975 7.93Apr 1975 7.50May 1975 7.40Jun 1975 7.07Jul 1975 7.15Aug 1975 7.66Sep 1975 7.88Oct 1975 7.96Nov 1975 7.53Dec 1975 7.26Jan 1976 7.00Feb 1976 6.75Mar 1976 6.75Apr 1976 6.75May 1976…arrow_forwardUsing FDF, BDF, and CDF, find the first derivative; 1. The distance x of a runner from a fixed point is measured (in meters) at an interval of half a second. The data obtained is: t 0 x 0 0.5 3.65 1.0 1.5 2.0 6.80 9.90 12.15 Use CDF to approximate the runner's velocity at times t = 0.5s and t = 1.5s 2. Using FDF, BDF, and CDF, find the first derivative of f(x)=x Inx for an input of 2 assuming a step size of 1. Calculate using Analytical Solution and Absolute Relative Error: = True Value - Approximate Value| x100 True Value 3. Given the data below where f(x) sin (3x), estimate f(1.5) using Langrage Interpolation. x 1 1.3 1.6 1.9 2.2 f(x) 0.14 -0.69 -0.99 -0.55 0.31 4. The vertical distance covered by a rocket from t=8 to t=30 seconds is given by: 30 x = Loo (2000ln 140000 140000 - 2100 9.8t) dt Using the Trapezoidal Rule, n=2, find the distance covered. 5. Use Simpson's 1/3 and 3/8 Rule to approximate for sin x dx. Compare the results for n=4 and n=8arrow_forwardCan you check if my step is correct?arrow_forward
- I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, and Simplify to Find the Frequency-Domain Expression. I need to understand on finding Y(s)arrow_forward1. A bicyclist is riding their bike along the Chicago Lakefront Trail. The velocity (in feet per second) of the bicyclist is recorded below. Use (a) Simpson's Rule, and (b) the Trapezoidal Rule to estimate the total distance the bicyclist traveled during the 8-second period. t 0 2 4 6 8 V 10 15 12 10 16 2. Find the midpoint rule approximation for (a) n = 4 +5 x²dx using n subintervals. 1° 2 (b) n = 8 36 32 28 36 32 28 24 24 20 20 16 16 12 8- 4 1 2 3 4 5 6 12 8 4 1 2 3 4 5 6arrow_forward1. A Blue Whale's resting heart rate has period that happens to be approximately equal to 2π. A typical ECG of a whale's heartbeat over one period may be approximated by the function, f(x) = 0.005x4 2 0.005x³-0.364x² + 1.27x on the interval [0, 27]. Find an nth-order Fourier approximation to the Blue Whale's heartbeat, where n ≥ 3 is different from that used in any other posts on this topic, to generate a periodic function that can be used to model its heartbeat, and graph your result. Be sure to include your chosen value of n in your Subject Heading.arrow_forward
- I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, andarrow_forwardma Classes Term. Spring 2025 Title Details Credit Hours CRN Schedule Type Grade Mode Level Date Status Message *MATHEMATICS FOR MANAGEME... MTH 245, 400 4 54835 Online Normal Grading Mode Ecampus Undergradu... 03/21/2025 Registered **Web Registered... *SOIL SCIENCE CSS 205, 400 0 52298 Online Normal Grading Mode Undergraduate 03/21/2025 Waitlisted Waitlist03/21/2025 PLANT PATHOLOGY BOT 451, 400 4 56960 Online Normal Grading Mode Undergraduate 03/21/2025 Registered **Web Registered... Records: 3 Schedule Schedule Detailsarrow_forwardHere is an augmented matrix for a system of equations (three equations and three variables). Let the variables used be x, y, and z: 1 2 4 6 0 1 -1 3 0 0 1 4 Note: that this matrix is already in row echelon form. Your goal is to use this row echelon form to revert back to the equations that this represents, and then to ultimately solve the system of equations by finding x, y and z. Input your answer as a coordinate point: (x,y,z) with no spaces.arrow_forward
- 1 3 -4 In the following matrix perform the operation 2R1 + R2 → R2. -2 -1 6 After you have completed this, what numeric value is in the a22 position?arrow_forward5 -2 0 1 6 12 Let A = 6 7 -1 and B = 1/2 3 -14 -2 0 4 4 4 0 Compute -3A+2B and call the resulting matrix R. If rij represent the individual entries in the matrix R, what numeric value is in 131? Input your answer as a numeric value only.arrow_forward1 -2 4 10 My goal is to put the matrix 5 -1 1 0 into row echelon form using Gaussian elimination. 3 -2 6 9 My next step is to manipulate this matrix using elementary row operations to get a 0 in the a21 position. Which of the following operations would be the appropriate elementary row operation to use to get a 0 in the a21 position? O (1/5)*R2 --> R2 ○ 2R1 + R2 --> R2 ○ 5R1+ R2 --> R2 O-5R1 + R2 --> R2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Use of ALGEBRA in REAL LIFE; Author: Fast and Easy Maths !;https://www.youtube.com/watch?v=9_PbWFpvkDc;License: Standard YouTube License, CC-BY
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY