Using & Understanding Mathematics: A Quantitative Reasoning Approach (7th Edition)
7th Edition
ISBN: 9780134705187
Author: Jeffrey O. Bennett, William L. Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.B, Problem 5E
To determine
The general equation for a linear function is described and its relation to the standard algebraic form
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020.
Part A: Find the vertex of V(x). Show all work.
Part B: Interpret what the vertex means in terms of the value of the home.
Show all work to solve 3x² + 5x - 2 = 0.
Two functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it.
f(x)
h(x)
21
5
4+
3
f(x) = −2(x − 4)² +2
+
-5 -4-3-2-1
1
2
3
4
5
-1
-2
-3
5
Chapter 9 Solutions
Using & Understanding Mathematics: A Quantitative Reasoning Approach (7th Edition)
Ch. 9.A - Prob. 1QQCh. 9.A - Prob. 2QQCh. 9.A - Prob. 3QQCh. 9.A - Prob. 4QQCh. 9.A - 5. When you nuke a graph of the function \[z =...Ch. 9.A - 6. The values taken on by the dependent variable...Ch. 9.A - 7. Consider a function that describes how a...Ch. 9.A - Prob. 8QQCh. 9.A - Prob. 9QQCh. 9.A - 10. Suppose that two groups of scientists have...
Ch. 9.A - Prob. 1ECh. 9.A - Prob. 2ECh. 9.A - Prob. 3ECh. 9.A - Prob. 4ECh. 9.A - Prob. 5ECh. 9.A - Prob. 6ECh. 9.A - Prob. 7ECh. 9.A - 8. My mathematical model fits the data perfectly,...Ch. 9.A - Coordinate Plane Review. Use the skills covered in...Ch. 9.A - 9-10: Coordinate Plane Review. Use the skills...Ch. 9.A - Identifying Functions. In each of the following...Ch. 9.A - Prob. 12ECh. 9.A - Prob. 13ECh. 9.A - Identifying Functions. In each of the following...Ch. 9.A - Prob. 15ECh. 9.A - Prob. 16ECh. 9.A - Related Quantities. Write a short statement that...Ch. 9.A - Prob. 18ECh. 9.A - Prob. 19ECh. 9.A - Related Quantities. Write a short statement that...Ch. 9.A - Related Quantities. Write a short statement that...Ch. 9.A - 15-22: Related Quantities. Write a short statement...Ch. 9.A - 23. Pressure Function. Study Figure 9.6.
Use the...Ch. 9.A - Prob. 24ECh. 9.A - Prob. 25ECh. 9.A - Prob. 26ECh. 9.A - 25-26: Functions from Graphs. Consider the graphs...Ch. 9.A - Prob. 28ECh. 9.A - 27-30: Functions from Data Tables. Each of the...Ch. 9.A - Prob. 30ECh. 9.A - Prob. 31ECh. 9.A - Prob. 32ECh. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - 31-42: Rough Sketches of Functions. For each...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Prob. 39ECh. 9.A - Prob. 40ECh. 9.A - Rough Sketches of Functions. For each function,...Ch. 9.A - Prob. 42ECh. 9.A - Everyday Models. Describe three different models...Ch. 9.A - 44. Functions and Variables in the News. Identity...Ch. 9.A - Prob. 45ECh. 9.A - 46. Variable Tables. Find data on the Web (or two...Ch. 9.B - A linear function is characterized by an...Ch. 9.B - You have a graph of a linear function. To...Ch. 9.B - The graph of a linear function is sloping downward...Ch. 9.B - Suppose that Figure 9. 11 is an accurate...Ch. 9.B - Which town would have the steepest slope on a...Ch. 9.B - Consider the function price = $100 - ( $3/yr) ×...Ch. 9.B - Consider the demand function given in Example 6,...Ch. 9.B - A line intersects the y-axis at a value of y = 7...Ch. 9.B - Consider a line with equation \[y = 12x - 3\]....Ch. 9.B - Charlie picks apples in the orchard at a constant...Ch. 9.B - What does it mean to say that a function is...Ch. 9.B - Prob. 2ECh. 9.B - How is the rate of change of a linear function...Ch. 9.B - 4. How do you find the change in the dependent...Ch. 9.B - 3. Describe the general equation for a linear...Ch. 9.B - Prob. 6ECh. 9.B - When I graphed the linear function, it turned out...Ch. 9.B - I graphed two linear functions, and the one with...Ch. 9.B - My freeway speed is the rate of change in my...Ch. 9.B - It's possible to make a linear model from any two...Ch. 9.B - Linear Functions. Consider the following graphs....Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - Linear Functions. Consider the following graphs a....Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - 11-16: Linear Functions. Consider the following...Ch. 9.B - 17-22: Rate of Change Rule. The following...Ch. 9.B - 17-22: Rate of Change Rule. The following...Ch. 9.B - 17-22: Rate of Change Rule. The following...Ch. 9.B - Prob. 20ECh. 9.B - Prob. 21ECh. 9.B - Prob. 22ECh. 9.B - 23-20: Linear Equations. The following situations...Ch. 9.B - Prob. 24ECh. 9.B - 23-20: Linear Equations. The following situations...Ch. 9.B - Prob. 26ECh. 9.B - 23-28: Linear Equations. The following situations...Ch. 9.B - 23-28: linear Equations. The following situations...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - Equations from Two Data Points. Create the...Ch. 9.B - 29-34: Equations from Two Data Points. Create the...Ch. 9.B - Prob. 34ECh. 9.B - Prob. 35ECh. 9.B - Prob. 36ECh. 9.B - Prob. 37ECh. 9.B - Prob. 38ECh. 9.B - Prob. 39ECh. 9.B - 35-42: Algebraic Linear Equations. For the...Ch. 9.B - 35-42: Algebraic Linear Equations. For the...Ch. 9.B - Algebraic Linear Equations. For the following...Ch. 9.B - Linear Graphs. The following situations can be...Ch. 9.B - Prob. 44ECh. 9.B - Linear Graphs. The following situations can be...Ch. 9.B - Prob. 46ECh. 9.B - Prob. 47ECh. 9.B - Prob. 48ECh. 9.B - Wildlife Management. A common technique for...Ch. 9.B - Linear Models. Describe at least two situations...Ch. 9.B - 51. Nonlinear Models. Describe at least one...Ch. 9.B - Alcohol Metabolism. Most drugs are eliminated from...Ch. 9.B - Properly Depreciation. Go to the IRS website, and...Ch. 9.C - Which statement is true about exponential growth?...Ch. 9.C - A city's population starts at 100,000 people and...Ch. 9.C - A city’s population suns at 100,000 people and...Ch. 9.C - India’s 2017 population was estimated to be 1.34...Ch. 9.C - Suppose that inflation causes the value of a...Ch. 9.C - Figure 9.18(b) shows the graph of an exponentially...Ch. 9.C - Polly received a large dose of an antibiotic and...Ch. 9.C - The half-life of carbon-14 is 5700 years, and...Ch. 9.C - Radioactive uranium-235 has a half-life of about...Ch. 9.C - Compare the list two forms of the exponential...Ch. 9.C - Prob. 1ECh. 9.C - Prob. 2ECh. 9.C - 3. Describe how you tan graph an exponential...Ch. 9.C - 4. Describe the meaning of each of the three forms...Ch. 9.C - Prob. 5ECh. 9.C - Prob. 6ECh. 9.C - After 100 years, a population growing at a rate of...Ch. 9.C - When 1 used the exponential function in model the...Ch. 9.C - We can use the hurt that radioactive materials...Ch. 9.C - I used the exponential function to figure how much...Ch. 9.C - Review of logarithms. Use the skills coveted in...Ch. 9.C - Prob. 12ECh. 9.C - Prob. 13ECh. 9.C - Prob. 14ECh. 9.C - Review of logarithms. Use the skills coveted in...Ch. 9.C - 11-26: Review of logarithms. Use the skills...Ch. 9.C - 11-26: Review of logarithms. Use the skills...Ch. 9.C - 11-26: Review of logarithms. Use the skills...Ch. 9.C - Review of logarithms. Use the skills coveted in...Ch. 9.C - Prob. 20ECh. 9.C - Prob. 21ECh. 9.C - Prob. 22ECh. 9.C - Prob. 23ECh. 9.C - Prob. 24ECh. 9.C - Prob. 25ECh. 9.C - Prob. 26ECh. 9.C - 27-34. Exponential growth and decay laws. Consider...Ch. 9.C - 27-34: Exponential growth and decay laws. Consider...Ch. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - Prob. 32ECh. 9.C - Prob. 33ECh. 9.C - . Exponential growth and decay laws. Consider the...Ch. 9.C - Annual vs. Monthly Inflation. Answer the following...Ch. 9.C - Annual vs. Monthly Inflation. Answer the following...Ch. 9.C - Hyperinflation in Germany. In 1923, Germany...Ch. 9.C - Prob. 38ECh. 9.C - 39. Extinction by Poaching. Suppose that poaching...Ch. 9.C - World Oil Production. Annual world oil production...Ch. 9.C - Prob. 41ECh. 9.C - Aspirin Metabolism. Assume that for the average...Ch. 9.C - Prob. 43ECh. 9.C - Prob. 44ECh. 9.C - Prob. 45ECh. 9.C - Metropolitan Population Growth. A small city had a...Ch. 9.C - Rising Home Prices. In 2000, the median home price...Ch. 9.C - Periodic Drug Doses. It is common to take a drug...Ch. 9.C - 49. Increasing Atmospheric Carbon Dioxide. Direct...Ch. 9.C - Prob. 50ECh. 9.C - Inflation Rate in the News. Find a news report...Ch. 9.C - Prob. 52ECh. 9.C - Radiometric Dating in the News. Find a news report...Ch. 9.C - Prob. 54ECh. 9.C - Prob. 55E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The functions f(x) = (x + 1)² - 2 and g(x) = (x-2)² + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning.arrow_forwardTotal marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forward
- Total marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward
- 3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forwardFill in the blanks to describe squares. The square of a number is that number Question Blank 1 of 4 . The square of negative 12 is written as Question Blank 2 of 4 , but the opposite of the square of 12 is written as Question Blank 3 of 4 . 2 • 2 = 4. Another number that can be multiplied by itself to equal 4 is Question Blank 4 of 4 .arrow_forward
- 12) The prime factors of 1365 are 3, 5, 7 and 13. Determine the total number of divisors of 1365.arrow_forward11) What is the sum of numbers in row #8 of Pascal's Triangle?arrow_forward14) Seven students and three teachers wish to join a committee. Four of them will be selected by the school administration. What is the probability that three students and one teacher will be selected?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY