
Interpretation:
From the given options, the effect of temperature change for the following reaction has to be chosen.
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
There are four types of stress or changes which affects the system:
Concentration Changes:
Addition of reactant or product or removal of reactant or product from a system at equilibrium will affects the equilibrium. If some reactant is added to a system at equilibrium, then the equilibrium will shifts to the product side, so that the added reactant get consumed. If product is added then the equilibrium will shift towards left side.
Example:
If
If
If
Temperature Changes:
Heat is one of the products in exothermic reaction and heat is used up in endothermic reaction.
Consider an exothermic reaction;
If heat is added up, then the reaction will shift to left so that the amount of heat will decrease.
Lowering the temperature will make the reaction to shift towards right.
Consider an endothermic reaction;
Increase in temperature will shift the reaction towards right. If heat is added up, then the reaction will shift towards right.
Pressure Changes:
Only the gaseous reactants and products get affected by the pressure change.
Consider the reaction:
3 moles of reactant gives 2 moles of product.
Increase in pressure will shift the reaction towards the side which have fewer molecules.

Trending nowThis is a popular solution!

Chapter 9 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forwardUsing the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forward
- Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forwardHi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forward
- Draw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning



