Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.6, Problem 26P
Summary Introduction
To perform: A sensitivity analysis on the risk tolerance.
Introduction: Simulation model is the digital prototype of the physical model that helps to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A salesperson uses three different airlines. The probabilities of switching from one airline to another in consecutive flights are shown below.
If the last flight was on Delta, what is the probability that the next was on American?
American
Delta
Southwest
American
0.5
0.25
0.25
Delta
0.2
0.6
0.2
Southwest
0.3
0.3
0.4
A
0.5
B
0.2
C
0.25
D
0.6
A GMAC MBA new-matriculants survey provided the following data for 2018 students.
Excel File: data04-53.xlsx
Applied to More
Than One School
Yes
No
23 and under
207
201
24-26
299
379
Age
Group
27-30
185
268
31-35
66
193
36 and over
51
169
a. Given that a person applied to more than one school, what is the probability that the person is 24 - 26 years old (to 2 decimals)?
b. Given that a person is in the 36 and over age group, what is the probability that the person applied to more than one school (to 4 decimals)?
c. What is the probability that a person is 24 - 26 years old or applied to more than one school (to 4 decimals)?
d. Suppose a person is known to have applied to only one school. What is the probability that the person is 31 or more years old (to 4 decimals)?
e. Is the number of schools applied to independent of age? Explain.
Select your answer -
Markov process models can be used to describe the probability that a consumer purchasing brand A in one time period
1.will sell brand A in the next period
2. all of the answers are correct.
3.will sell brand A after three time periods
4. will not purchase brand A in the next period
Chapter 9 Solutions
Practical Management Science
Ch. 9.2 - Prob. 1PCh. 9.2 - Prob. 2PCh. 9.2 - Prob. 3PCh. 9.3 - Prob. 4PCh. 9.3 - Prob. 5PCh. 9.3 - Prob. 6PCh. 9.3 - Prob. 7PCh. 9.4 - Explain in some detail how the PrecisionTree...Ch. 9.4 - Prob. 9PCh. 9.4 - Prob. 10P
Ch. 9.5 - Prob. 11PCh. 9.5 - Prob. 12PCh. 9.5 - Prob. 13PCh. 9.5 - Prob. 17PCh. 9.5 - Prob. 18PCh. 9.5 - Prob. 19PCh. 9.5 - Prob. 21PCh. 9.5 - The model in Example 9.3 has only two market...Ch. 9.6 - Prob. 26PCh. 9.6 - Prob. 27PCh. 9.6 - Prob. 28PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 34PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 46PCh. 9 - Prob. 48PCh. 9 - Prob. 53PCh. 9 - Prob. 67PCh. 9 - Prob. 68PCh. 9 - Prob. 69PCh. 9 - Prob. 70PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Based on Babich (1992). Suppose that each week each of 300 families buys a gallon of orange juice from company A, B, or C. Let pA denote the probability that a gallon produced by company A is of unsatisfactory quality, and define pB and pC similarly for companies B and C. If the last gallon of juice purchased by a family is satisfactory, the next week they will purchase a gallon of juice from the same company. If the last gallon of juice purchased by a family is not satisfactory, the family will purchase a gallon from a competitor. Consider a week in which A families have purchased juice A, B families have purchased juice B, and C families have purchased juice C. Assume that families that switch brands during a period are allocated to the remaining brands in a manner that is proportional to the current market shares of the other brands. For example, if a customer switches from brand A, there is probability B/(B + C) that he will switch to brand B and probability C/(B + C) that he will switch to brand C. Suppose that the market is currently divided equally: 10,000 families for each of the three brands. a. After a year, what will the market share for each firm be? Assume pA = 0.10, pB = 0.15, and pC = 0.20. (Hint: You will need to use the RISKBINOMLAL function to see how many people switch from A and then use the RISKBENOMIAL function again to see how many switch from A to B and from A to C. However, if your model requires more RISKBINOMIAL functions than the number allowed in the academic version of @RISK, remember that you can instead use the BENOM.INV (or the old CRITBENOM) function to generate binomially distributed random numbers. This takes the form =BINOM.INV (ntrials, psuccess, RAND()).) b. Suppose a 1% increase in market share is worth 10,000 per week to company A. Company A believes that for a cost of 1 million per year it can cut the percentage of unsatisfactory juice cartons in half. Is this worthwhile? (Use the same values of pA, pB, and pC as in part a.)arrow_forwardSoftware development is an inherently risky and uncertain process. For example, there are many examples of software that couldnt be finished by the scheduled release datebugs still remained and features werent ready. (Many people believe this was the case with Office 2007.) How might you simulate the development of a software product? What random inputs would be required? Which outputs would be of interest? Which measures of the probability distributions of these outputs would be most important?arrow_forwardPlay Things is developing a new Lady Gaga doll. The company has made the following assumptions: The doll will sell for a random number of years from 1 to 10. Each of these 10 possibilities is equally likely. At the beginning of year 1, the potential market for the doll is two million. The potential market grows by an average of 4% per year. The company is 95% sure that the growth in the potential market during any year will be between 2.5% and 5.5%. It uses a normal distribution to model this. The company believes its share of the potential market during year 1 will be at worst 30%, most likely 50%, and at best 60%. It uses a triangular distribution to model this. The variable cost of producing a doll during year 1 has a triangular distribution with parameters 15, 17, and 20. The current selling price is 45. Each year, the variable cost of producing the doll will increase by an amount that is triangularly distributed with parameters 2.5%, 3%, and 3.5%. You can assume that once this change is generated, it will be the same for each year. You can also assume that the company will change its selling price by the same percentage each year. The fixed cost of developing the doll (which is incurred right away, at time 0) has a triangular distribution with parameters 5 million, 7.5 million, and 12 million. Right now there is one competitor in the market. During each year that begins with four or fewer competitors, there is a 25% chance that a new competitor will enter the market. Year t sales (for t 1) are determined as follows. Suppose that at the end of year t 1, n competitors are present (including Play Things). Then during year t, a fraction 0.9 0.1n of the company's loyal customers (last year's purchasers) will buy a doll from Play Things this year, and a fraction 0.2 0.04n of customers currently in the market ho did not purchase a doll last year will purchase a doll from Play Things this year. Adding these two provides the mean sales for this year. Then the actual sales this year is normally distributed with this mean and standard deviation equal to 7.5% of the mean. a. Use @RISK to estimate the expected NPV of this project. b. Use the percentiles in @ RISKs output to find an interval such that you are 95% certain that the companys actual NPV will be within this interval.arrow_forward
- Use @RISK to draw a binomial distribution that results from 50 trials with probability of success 0.3 on each trial, and use it to answer the following questions. a. What are the mean and standard deviation of this distribution? b. You have to be more careful in interpreting @RISK probabilities with a discrete distribution such as this binomial. For example, if you move the left slider to 11, you find a probability of 0.139 to the left of it. But is this the probability of less than 11 or less than or equal to 11? One way to check is to use Excels BINOM.DIST function. Use this function to interpret the 0.139 value from @RISK. c. Using part b to guide you, use @RISK to find the probability that a random number from this distribution will be greater than 17. Check your answer by using the BINOM.DIST function appropriately in Excel.arrow_forwardThe game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forward4. A credit rating company recommends granting of credit cards based on several criteria. One is annual income. If the annual income of applicants is normally dis- tributed with mean $22,000 and standard deviation $4,800 and the company recommends no applicant unless his or her income exceeds $15,000, what fraction of the applicants are denied on this basis?arrow_forward
- Johnson Electronics Corporation makes electric tubes. It is known that the standard deviation of the lives of these tubes is 145 hours. The company's research department takes a sample of 90 such tubes and finds that the mean life of these tubes is 2300 hours. What is the probability that this sample mean is within 22 hours of the mean life of all tubes produced by this company? Round your answer to four decimal places. P =arrow_forwardA television network earns an average of $25 million each season from a hit program and loses an average of $8 million each season on a program that turns out to be a flop. Of all programs picked up by this network in recent years, 25% turn out to be hits and 75% turn out to be flops. At a cost of C dollars, a market research firm will analyze a pilot episode of a prospec- tive program and issue a report predicting whether the given programwill end up being a hit. If the program is actually going to be a hit, there is a 75% chance that the market researchers will predict the program to be a hit. If the program is actually going to be a flop, there is only a 30% chance that the market researchers will predict the program to be a hit.a. What is the maximum value of C that the network should be willing to pay the market research firm?b. Calculate and interpret EVPI for this decision problem.arrow_forwardList down the most important types of probability distributions used in quality management?arrow_forward
- What price do farmers get for their watermelon crops? In the third week of July, a random sample of 42 farming regions gave a sample mean of = $6.88 per 100 pounds of watermelon. Assume that σ is known to be $1.92 per 100 pounds. (a) Find a 90% confidence interval for the population mean price (per 100 pounds) that farmers in this region get for their watermelon crop (in dollars). What is the margin of error (in dollars)? (For each answer, enter a number. Round your answers to two decimal places.)lower limit $ upper limit $ margin of error $ (b) Find the sample size necessary for a 90% confidence level with maximal error of estimate E = 0.27 for the mean price per 100 pounds of watermelon. (Enter a number. Round up to the nearest whole number.) farming regions (c) A farm brings 15 tons of watermelon to market. Find a 90% confidence interval for the population mean cash value of this crop (in dollars). What is the margin of error (in dollars)? Hint: 1 ton is 2000…arrow_forwardThe Decision Variables in a What If analysis provide the limitations for each variable. True Falsearrow_forwardSenior executives at an oil company are trying to decide whether to drill for oil in a particular field. It costs the company $750,000 to drill. The company estimates that if oil is found the estimated value will be $3,650,000. At present, the company believes that there is a 48% chance that the field actually contains oil. Before drilling, the company can hire an expert at a cost of $75,000 to perform tests to make a prediction of whether oil is present. Based on a similar test, the probability that the test will predict oil on the field is 0.55. The probability of actually finding oil when oil was predicted is 0.85. The probability of actually finding oil when no oil was predicted is 0.2. What is the EMV if the company hires the expert?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,