VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9.5, Problem 9.145P

Determine the mass moment of inertia of the steel fixture shown with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The density of steel is 7850 kg/m3.)

Chapter 9.5, Problem 9.145P, Determine the mass moment of inertia of the steel fixture shown with respect to (a) the x axis, (b)

Fig. P9.145

(a)

Expert Solution
Check Mark
To determine

Find the mass moment of inertia with respect to x axis.

Answer to Problem 9.145P

The mass moment of inertia with respect to x axis is 26.4×103kgm2_.

Explanation of Solution

Given information:

The density (ρST) of steel is 7,850kg/m3.

Calculation:

Sketch the section of steel fixture as shown in Figure 1.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 9.5, Problem 9.145P

Find the mass (m1) of component 1 as shown below:

(m1)=ρV (1)

Here, V is volume of rectangular section 1.

Modify Equation (1).

(m1)=ρ(wlt) (2)

Here, w is the width of the section 1, l is the length of the rectangular section 1, and t is the thickness of the section 1.

Substitute 80mm for w, 50mm for l, and 16mm for t in Equation (2).

(m1)=7,850×(80mm(1m103mm)×50mm(1m103mm)×16mm(1m103mm))=7,850×0.08×0.05×0.16=5.021kg

Find the mass (m2) of component 2 as shown below:

(m2)=ρV (3)

Here, V is volume of rectangular section 2.

Modify Equation (3).

(m2)=ρ(wlt) (4)

Here, w is the width of the section 2, l is the length of the rectangular section 2, and t is the thickness of the section 2.

Substitute 80mm for w, 38mm for l, and 70mm for t in Equation (4).

(m2)=7,850×[80mm(1m103mm)×38mm(1m103mm)×70mm(1m103mm)]=7,850×(0.08×0.038×0.07)=1.67048kg

Find the mass (m3) of component 3 as shown below:

(m3)=ρV=ρ(π2×r2h) (5)

Substitute 24mm for r and 40mm for h in Equation (5).

(m3)=7,850×(π2×24mm(1m103mm)×40mm(1m103mm))=7,850×(π2×0.0242×0.04)=7,850×3.619×105=0.28410kg

Refer to Figure 9.28, “Mass moment of inertia for common geometric shapes” in the text book.

Find the mass moment of inertia with respect to x axis as shown below:

Ix=(Ix)1(Ix)2(Ix)3=[112×m1[b12+h12]+m1[(b2)2+(h2)2]112(m2[b22+h22])+m2[(b12b22)2+((b12+h22)2)]m3[(14169π2)r2+112h32+m3[b14r3π]+(h1h32)2]] (6)

Convert the dimension in mm to m.

b1=50mm(1m103mm)=0.05m

Similarly calculate the remaining values.

Substitute 0.28410kg for m3, 1.67048kg for m2, 5.021kg for m1, 0.05m for b1, 0.16m for h1, 0.038m for b2, 0.07m for h2, 0.024m for r, 0.04m for h3 in Equation (6).

Ix=[112×5.02400×(0.052)+(0.16)2+5.02400[(0.052)2+(0.162)2]112×1.67048[0.0382+0.072]+1.67048[(0.050.0382)2+(0.050.072)2]0.28410[(14169π2)0.0242+112(0.042)]+0.28410[(0.054×0.0243π)2+(0.160.042)2]]=[11.76456+35.29360.8831+13.67450.0493+6.0187]=26.4325×103kgm2

Thus, the mass moment of inertia with respect to x axis is 26.4×103kgm2_.

(b)

Expert Solution
Check Mark
To determine

Find the mass moment of inertia with respect to y axis.

Answer to Problem 9.145P

The mass moment of inertia with respect to y axis is 31.2×103kgm2_.

Explanation of Solution

Calculation:

Find the mass moment of inertia with respect to y axis as shown below:

Iy=(Iy)1(Iy)2(Iy)3=[112×m1[b12+h12]+m1[(b12)2+(h12)2]112(m2[b22+h22])+m2[(b22)2+((b+h22)2)]112m3[3r3+h32]+m3[(b32)2+(h1+h32)2]] (7)

Convert the dimensions in mm to m.

b1=50mm(1m103mm)=0.05m

Substitute 0.28410kg for m3, 1.67048kg for m2, 5.021kg for m1, 0.08m for b1, 0.16m for h1, 0.08m for b2, 0.07m for h2, 0.024m for r, 0.084m for b3, 0.05m for b, and 0.04m for h3 in Equation (7).

Iy=[112×5.02400[0.082+0.162]+5.02400×[(0.082)2+(0.162)2]112×1.67048[0.082+0.072]+1.67048×[(0.082)2+(0.05+0.072)2]112×0.28410[3(0.0242+0.042)+0.28410[(0.082)2+(0.16+0.042)2]]]=[13.3973+40.19201.5730+14.74200.0788+6.0229]=31.1726×103kgm2

(c)

Expert Solution
Check Mark
To determine

Find the mass moment of inertia with respect to z axis.

Answer to Problem 9.145P

The mass moment of inertia with respect to z axis is 8.58×103kgm2_.

Explanation of Solution

Calculation:

Find the mass moment of inertia with respect to z axis as shown below:

Iz=(Iz)1(Iz)2(Iz)3=[112×m1[b12+h12]+m1[(b12)2+(h12)2]112(m2[b22+h22])+m2[(b22)2+((bh22)2)]m3(12169π2)r2+m3[(b32)2+(h14r3π)2]] (8)

Convert the dimensions in mm to m.

b1=80mm(1m103mm)=0.08m

Substitute 0.28410kg for m3, 1.67048kg for m2, 5.021kg for m1, 0.08m for b1, 0.05m for h1, 0.08m for b2, 0.38m for h2, 0.024m for r, 0.08m for b3, and 0.05m for b, in Equation (8).

Iz=[112×5.0240[0.082+0.052]+5.02400[(0.082)2+(0.052)2]112×1.67048×[0.082+0.382]+1.67048[(0.082)2+(0.050.0382)2](0.28410(12169π2)×0.0242+0.28410[(0.082)2+(0.054×0.0243π)2])]=3.7261+11.17841.0919+4.2781(0.0523+0.9049)=8.5773×103=8.58×103kgm2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Find the resultant force vector from adding F1, F2 and F3, where … F1 = {-8i+10j-32k} N  F2 is 40 N in magnitude with coordinate direction angles α, β, and γ, of 45, 120 and 60 degrees, respectively  and F3 is 22 N in magnitude with transverse and azimuth angles of 65 and 40 degrees, respectively Express your final answer as a Cartesian vector as well as a magnitude with angles.
A 2-kW resistance heater wire with thermal conductivity of k=20 W/mK, a diameter of D=4mm, and a length of L=0.9m is used to boil water. If the outer surface temp of the resistance wire is Ts=110 degrees C, determine the temp at the center of the wire.
A flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has emmisssivity and an absorptivity of 0.9. The top surface where x=0 temp of the absorber is T0=35 degrees C, and solar radiation is incident on the basorber at 500 W/m^2 with a surrounding temp of 0 degrees C. The convection heat transfer coefficient at the absorber surface is 5 W/m^2 K, while the ambient temp is 25 degrees C. Show that the variation of the temp in the basorber plate can be expressed as T(x)=-(q0/k)x+T0, and determine net heat flux, q, absorbed by solar collector.

Chapter 9 Solutions

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)

Ch. 9.1 - Prob. 9.11PCh. 9.1 - Prob. 9.12PCh. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - Prob. 9.15PCh. 9.1 - Prob. 9.16PCh. 9.1 - Prob. 9.17PCh. 9.1 - Prob. 9.18PCh. 9.1 - Determine the moment of inertia and the radius of...Ch. 9.1 - Prob. 9.20PCh. 9.1 - Determine the polar moment of inertia and the...Ch. 9.1 - Prob. 9.22PCh. 9.1 - Prob. 9.23PCh. 9.1 - 9.23 and 9.24 Determine the polar moment of...Ch. 9.1 - Prob. 9.25PCh. 9.1 - Prob. 9.26PCh. 9.1 - Prob. 9.27PCh. 9.1 - Prob. 9.28PCh. 9.1 - Prob. 9.29PCh. 9.1 - Prove that the centroidal polar moment of inertia...Ch. 9.2 - 9.31 and 9.32 Determine the moment of inertia and...Ch. 9.2 - 9.31 and 9.32 Determine the moment of inertia and...Ch. 9.2 - 9.33 and 9.34 Determine the moment of inertia and...Ch. 9.2 - 9.33 and 9.34 Determine the moment of inertia and...Ch. 9.2 - Determine the moments of inertia of the shaded...Ch. 9.2 - Determine the moments of inertia of the shaded...Ch. 9.2 - Prob. 9.37PCh. 9.2 - Prob. 9.38PCh. 9.2 - Prob. 9.39PCh. 9.2 - Prob. 9.40PCh. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - Prob. 9.43PCh. 9.2 - Prob. 9.44PCh. 9.2 - 9.45 and 9.46 Determine the polar moment of...Ch. 9.2 - Prob. 9.46PCh. 9.2 - 9.47 and 9.48 Determine the polar moment of...Ch. 9.2 - 9.47 and 9.48 Determine the polar moment of...Ch. 9.2 - To form a reinforced box section, two rolled W...Ch. 9.2 - Two channels are welded to a d 12-in. steel plate...Ch. 9.2 - Prob. 9.51PCh. 9.2 - Two 20-mm steel plates are welded to a rolled S...Ch. 9.2 - A channel and a plate are welded together as shown...Ch. 9.2 - Prob. 9.54PCh. 9.2 - Two L76 76 6.4-mm angles are welded to a C250 ...Ch. 9.2 - Prob. 9.56PCh. 9.2 - Prob. 9.57PCh. 9.2 - 9.57 and 9.58 The panel shown forms the end of a...Ch. 9.2 - Prob. 9.59PCh. 9.2 - Prob. 9.60PCh. 9.2 - Prob. 9.61PCh. 9.2 - Prob. 9.62PCh. 9.2 - Prob. 9.63PCh. 9.2 - Prob. 9.64PCh. 9.2 - Prob. 9.65PCh. 9.2 - Prob. 9.66PCh. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - Prob. 9.70PCh. 9.3 - Prob. 9.71PCh. 9.3 - Prob. 9.72PCh. 9.3 - Prob. 9.73PCh. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.75PCh. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.77PCh. 9.3 - Prob. 9.78PCh. 9.3 - Determine for the quarter ellipse of Prob. 9.67...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Prob. 9.85PCh. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - Prob. 9.87PCh. 9.3 - Prob. 9.88PCh. 9.3 - Prob. 9.89PCh. 9.3 - 9.89 and 9.90 For the angle cross section...Ch. 9.4 - Using Mohrs circle, determine for the quarter...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Prob. 9.93PCh. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - For the quarter ellipse of Prob. 9.67, use Mohrs...Ch. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.99PCh. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.101PCh. 9.4 - Prob. 9.102PCh. 9.4 - Prob. 9.103PCh. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - For a given area, the moments of inertia with...Ch. 9.4 - it is known that for a given area Iy = 48 106 mm4...Ch. 9.4 - Prob. 9.108PCh. 9.4 - Prob. 9.109PCh. 9.4 - Prob. 9.110PCh. 9.5 - A thin plate with a mass m is cut in the shape of...Ch. 9.5 - A ring with a mass m is cut from a thin uniform...Ch. 9.5 - A thin elliptical plate has a mass m. Determine...Ch. 9.5 - The parabolic spandrel shown was cut from a thin,...Ch. 9.5 - Prob. 9.115PCh. 9.5 - Fig. P9.115 and P9.116 9.116 A piece of thin,...Ch. 9.5 - A thin plate of mass m is cut in the shape of an...Ch. 9.5 - Fig. P9.117 and P9.118 9.118 A thin plate of mass...Ch. 9.5 - Determine by direct integration the mass moment of...Ch. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - Determine by direct integration the mass moment of...Ch. 9.5 - Fig. P9.122 and P9.123 9.123 Determine by direct...Ch. 9.5 - Prob. 9.124PCh. 9.5 - Prob. 9.125PCh. 9.5 - Prob. 9.126PCh. 9.5 - Prob. 9.127PCh. 9.5 - Prob. 9.128PCh. 9.5 - Prob. 9.129PCh. 9.5 - Knowing that the thin cylindrical shell shown has...Ch. 9.5 - A circular hole of radius r is to be drilled...Ch. 9.5 - The cups and the arms of an anemometer are...Ch. 9.5 - Prob. 9.133PCh. 9.5 - Determine the mass moment of inertia of the 0.9-lb...Ch. 9.5 - Prob. 9.135PCh. 9.5 - Prob. 9.136PCh. 9.5 - A 2-mm thick piece of sheet steel is cut and bent...Ch. 9.5 - A section of sheet steel 0.03 in. thick is cut and...Ch. 9.5 - A corner reflector for tracking by radar has two...Ch. 9.5 - A farmer constructs a trough by welding a...Ch. 9.5 - The machine element shown is fabricated from...Ch. 9.5 - Determine the mass moments of inertia and the...Ch. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Prob. 9.144PCh. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Aluminum wire with a weight per unit length of...Ch. 9.5 - The figure shown is formed of 18-in.-diameter...Ch. 9.5 - A homogeneous wire with a mass per unit length of...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.154PCh. 9.6 - Prob. 9.155PCh. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.157PCh. 9.6 - Prob. 9.158PCh. 9.6 - Prob. 9.159PCh. 9.6 - Prob. 9.160PCh. 9.6 - Prob. 9.161PCh. 9.6 - For the homogeneous tetrahedron of mass m shown,...Ch. 9.6 - Prob. 9.163PCh. 9.6 - Prob. 9.164PCh. 9.6 - Prob. 9.165PCh. 9.6 - Determine the mass moment of inertia of the steel...Ch. 9.6 - Prob. 9.167PCh. 9.6 - Prob. 9.168PCh. 9.6 - Prob. 9.169PCh. 9.6 - 9.170 through 9.172 For the wire figure of the...Ch. 9.6 - Prob. 9.171PCh. 9.6 - Prob. 9.172PCh. 9.6 - Prob. 9.173PCh. 9.6 - Prob. 9.174PCh. 9.6 - Prob. 9.175PCh. 9.6 - Prob. 9.176PCh. 9.6 - Prob. 9.177PCh. 9.6 - Prob. 9.178PCh. 9.6 - Prob. 9.179PCh. 9.6 - Prob. 9.180PCh. 9.6 - Prob. 9.181PCh. 9.6 - Prob. 9.182PCh. 9.6 - Prob. 9.183PCh. 9.6 - Prob. 9.184PCh. 9 - Determine by direct integration the moments of...Ch. 9 - Determine the moment of inertia and the radius of...Ch. 9 - Prob. 9.187RPCh. 9 - Prob. 9.188RPCh. 9 - Prob. 9.189RPCh. 9 - Two L4 4 12-in. angles are welded to a steel...Ch. 9 - Prob. 9.191RPCh. 9 - Prob. 9.192RPCh. 9 - Prob. 9.193RPCh. 9 - Prob. 9.194RPCh. 9 - Prob. 9.195RPCh. 9 - Determine the mass moment of inertia of the steel...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY