VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9.6, Problem 9.183P

(a)

To determine

Find the principal mass moment of inertia of the cylinder at the origin O.

(a)

Expert Solution
Check Mark

Answer to Problem 9.183P

The principal moment of inertia are K1=2.26γtga4_, K2=17.27γtga4_, and K3=19.08γtga4_.

Explanation of Solution

Given information:

Refer Problem 9.168.

Show the moment of inertia as follows:

Ix=18.91335γt8a4Iy=7.68953γt8a4Iz=12.00922γt8a4

Ixy=1.33333γt8a4Iyz=7.14159γt8a4Izx=0.66667γt8a4

Calculation:

Show the Equation 9.56 as follows:

{K3(Ix+Iy+Iz)K2+(IxIy+IyIz+IzIxIxy2Iyz2Izx2)K(IxIyIzIxIyz2IyIzx2IzIxy22IxyIyzIzx)}=0

Substitute 18.91335γt8a4 for Ix, 7.68953γt8a4 for Iy, 12.00922γt8a4 for Iz, 1.33333γt8a4 for Ixy, 7.14159γt8a4 for Iyz, and 0.66667γt8a4 for Izx.

[K3(18.91335γt8a4+7.68953γt8a4+12.00922γt8a4)K2+(18.91335γt8a4×7.68953γt8a4+7.68953γt8a4×12.00922γt8a4+12.00922γt8a4×18.91335γt8a4(1.33333γt8a4)2(7.14159γt8a4)2(0.66667γt8a4)2)K(18.91335γt8a4×7.68953γt8a4×12.00922γt8a418.91335γt8a4×(7.14159γt8a4)27.68953γt8a4×(0.66667γt8a4)212.00922γt8a4×(1.33333γt8a4)22(1.33333γt8a4)(7.14159γt8a4)×(0.66667γt8a4))]=0

Consider the value of K=Kγt8a4.

K338.1210K2+411.69009K744.47027=0

Solve the above Equation and get the value of K1=2.25890, K2=17.27274, and K3=19.08046.

The principal moment of inertia are K1=2.26γtga4, K2=17.27γtga4, and K3=19.08γtga4.

Thus, The principal moment of inertia are K1=2.26γtga4_, K2=17.27γtga4_, and K3=19.08γtga4_.

(b)

To determine

Find the angles made by the principal axis of inertia at O with the coordinate axis.

Sketch the body and show the orientation of the principal axis of inertia relative to x, y, and z axis.

(b)

Expert Solution
Check Mark

Answer to Problem 9.183P

The angles made by the principal axis of inertia at O with the coordinate axis is,

(θx)1=85°, (θy)1=36.8°, (θz)1=53.7°

(θx)2=81.7°, (θy)2=54.7°, (θz)1=143.4°

(θx)3=9.70°, (θy)3=99°, (θz)3=86.3°

Explanation of Solution

Given information:

Consider the direction cosines of each principal axis are denoted by λx,λy,λz.

Calculation:

Refer Part (a).

Consider K1.

Show the Equation 9.54 as follows:

(IxK1)(λx)1Ixy(λy)1Izx(λz)1=0Ixy(λx)1Iyz(λz)1+(IyK1)(λy)1=0} (1)

Substitute 18.91335γt8a4 for Ix, 7.68953γt8a4 for Iy, 1.33333γt8a4 for Ixy, 7.14159γt8a4 for Iyz, and 0.66667γt8a4 for Izx and 2.26γtga4 for K1.

(18.91335γt8a42.26γtga4)(λx)11.33333γt8a4(λy)10.66667γt8a4(λz)1=01.33333γt8a4(λx)17.14159γt8a4(λz)1+(7.68953γt8a42.26γtga4)(λy)1=0} (2)

Solve Equation (2).

Get the value of (λz)1=6.74653(λx)1,(λy)1=9.11761(λx)1.

Show the Equation 9.57 as follows:

(λx)12+(λy)12+(λz)12=1(λx)12+[9.11761(λx)1]2+[6.74653(λx)1]2=1

Solve above Equation and get the value of (λx)1=0.087825,(λy)1=0.80075,(λz)1=0.59251.

Show the direction cosines (θx)1,(θy)1,(θz)1 using the relation:

cos(θx)1=(λx)1=0.087825(θx)1=cos1(0.087825)=85°

cos(θz)1=(λz)1=0.59251(θz)1=cos1(0.59251)=53.7°

cos(θy)1=(λy)1=0.80075(θy)1=cos1(0.80075)=36.8°

Consider K2.

Show the Equation 9.54 as follows:

(IxK2)(λx)2Ixy(λy)2Izx(λz)2=0Ixy(λx)2Iyz(λz)2+(IyK2)(λy)2=0} (3)

Substitute 18.91335γt8a4 for Ix, 7.68953γt8a4 for Iy, 1.33333γt8a4 for Ixy, 7.14159γt8a4 for Iyz, and 0.66667γt8a4 for Izx and 17.27γtga4 for K2.

(18.91335γt8a417.27γtga4)(λx)21.33333γt8a4(λy)20.66667γt8a4(λz)2=01.33333γt8a4(λx)27.14159γt8a4(λz)2+(7.68953γt8a417.27γtga4)(λy)2=0} (4)

Solve Equation (4).

Get the value of (λz)2=5.58515(λx)2,(λy)2=4.02304(λx)2.

Show the Equation 9.57 as follows:

(λx)22+(λy)22+(λz)22=1(λx)22+[4.02304(λx)2]2+[5.58515(λx)2]2=1

Solve above Equation and get the value of (λx)2=0.14377,(λy)2=0.0.57839,(λz)2=0.80298.

Show the direction cosines (θx)2,(θy)2,(θz)2 using the relation:

cos(θx)2=(λx)2=0.14377(θx)2=cos1(0.14377)=81.7°

cos(θz)2=(λz)2=0.80298(θz)2=cos1(0.80298)=143.4°

cos(θy)2=(λy)2=0.0.57839(θy)2=cos1(0.0.57839)=54.7°

Consider K3.

Show the Equation 9.54 as follows:

(IxK3)(λx)3Ixy(λy)3Izx(λz)3=0Ixy(λx)3Iyz(λz)3+(IyK3)(λy)3=0} (5)

Substitute 18.91335γt8a4 for Ix, 7.68953γt8a4 for Iy, 1.33333γt8a4 for Ixy, 7.14159γt8a4 for Iyz, and 0.66667γt8a4 for Izx and 19.08γtga4 for K3.

(18.91335γt8a419.08γtga4)(λx)21.33333γt8a4(λy)20.66667γt8a4(λz)2=01.33333γt8a4(λx)27.14159γt8a4(λz)2+(7.68953γt8a419.08γtga4)(λy)2=0} (6)

Solve Equation (6).

Get the value of (λz)3=0.06522(λx)3,(λy)3=0.15794(λx)3.

Show the Equation 9.57 as follows:

(λx)32+(λy)32+(λz)32=1(λx)32+[0.15794(λx)3]2+[0.06522(λx)3]2=1

Solve above Equation and get the value of (λx)3=0.98571,(λy)3=0.15568,(λz)3=0.06429.

Show the direction cosines (θx)3,(θy)3,(θz)3 using the relation:

cos(θx)3=(λx)3=0.98571(θx)3=cos1(0.98571)=9.7°

cos(θz)3=(λz)3=0.06429(θz)3=cos1(0.06429)=86.3°

cos(θy)3=(λy)3=0.15568(θy)3=cos1(0.15568)=86.3°

The angles made by the principal axis of inertia at O with the coordinate axis is,

(θx)1=85°, (θy)1=36.8°, (θz)1=53.7°

(θx)2=81.7°, (θy)2=54.7°, (θz)1=143.4°

(θx)3=9.70°, (θy)3=99°, (θz)3=86.3°

Sketch the body and show the orientation of the principal axis of inertia relative to x, y, and z axis as shown in Figure 1.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 9.6, Problem 9.183P

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.
please help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoa
Solve this problem and show all of the work

Chapter 9 Solutions

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)

Ch. 9.1 - Prob. 9.11PCh. 9.1 - Prob. 9.12PCh. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - Prob. 9.15PCh. 9.1 - Prob. 9.16PCh. 9.1 - Prob. 9.17PCh. 9.1 - Prob. 9.18PCh. 9.1 - Determine the moment of inertia and the radius of...Ch. 9.1 - Prob. 9.20PCh. 9.1 - Determine the polar moment of inertia and the...Ch. 9.1 - Prob. 9.22PCh. 9.1 - Prob. 9.23PCh. 9.1 - 9.23 and 9.24 Determine the polar moment of...Ch. 9.1 - Prob. 9.25PCh. 9.1 - Prob. 9.26PCh. 9.1 - Prob. 9.27PCh. 9.1 - Prob. 9.28PCh. 9.1 - Prob. 9.29PCh. 9.1 - Prove that the centroidal polar moment of inertia...Ch. 9.2 - 9.31 and 9.32 Determine the moment of inertia and...Ch. 9.2 - 9.31 and 9.32 Determine the moment of inertia and...Ch. 9.2 - 9.33 and 9.34 Determine the moment of inertia and...Ch. 9.2 - 9.33 and 9.34 Determine the moment of inertia and...Ch. 9.2 - Determine the moments of inertia of the shaded...Ch. 9.2 - Determine the moments of inertia of the shaded...Ch. 9.2 - Prob. 9.37PCh. 9.2 - Prob. 9.38PCh. 9.2 - Prob. 9.39PCh. 9.2 - Prob. 9.40PCh. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - Prob. 9.43PCh. 9.2 - Prob. 9.44PCh. 9.2 - 9.45 and 9.46 Determine the polar moment of...Ch. 9.2 - Prob. 9.46PCh. 9.2 - 9.47 and 9.48 Determine the polar moment of...Ch. 9.2 - 9.47 and 9.48 Determine the polar moment of...Ch. 9.2 - To form a reinforced box section, two rolled W...Ch. 9.2 - Two channels are welded to a d 12-in. steel plate...Ch. 9.2 - Prob. 9.51PCh. 9.2 - Two 20-mm steel plates are welded to a rolled S...Ch. 9.2 - A channel and a plate are welded together as shown...Ch. 9.2 - Prob. 9.54PCh. 9.2 - Two L76 76 6.4-mm angles are welded to a C250 ...Ch. 9.2 - Prob. 9.56PCh. 9.2 - Prob. 9.57PCh. 9.2 - 9.57 and 9.58 The panel shown forms the end of a...Ch. 9.2 - Prob. 9.59PCh. 9.2 - Prob. 9.60PCh. 9.2 - Prob. 9.61PCh. 9.2 - Prob. 9.62PCh. 9.2 - Prob. 9.63PCh. 9.2 - Prob. 9.64PCh. 9.2 - Prob. 9.65PCh. 9.2 - Prob. 9.66PCh. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - Prob. 9.70PCh. 9.3 - Prob. 9.71PCh. 9.3 - Prob. 9.72PCh. 9.3 - Prob. 9.73PCh. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.75PCh. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.77PCh. 9.3 - Prob. 9.78PCh. 9.3 - Determine for the quarter ellipse of Prob. 9.67...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Prob. 9.85PCh. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - Prob. 9.87PCh. 9.3 - Prob. 9.88PCh. 9.3 - Prob. 9.89PCh. 9.3 - 9.89 and 9.90 For the angle cross section...Ch. 9.4 - Using Mohrs circle, determine for the quarter...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Prob. 9.93PCh. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - For the quarter ellipse of Prob. 9.67, use Mohrs...Ch. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.99PCh. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.101PCh. 9.4 - Prob. 9.102PCh. 9.4 - Prob. 9.103PCh. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - For a given area, the moments of inertia with...Ch. 9.4 - it is known that for a given area Iy = 48 106 mm4...Ch. 9.4 - Prob. 9.108PCh. 9.4 - Prob. 9.109PCh. 9.4 - Prob. 9.110PCh. 9.5 - A thin plate with a mass m is cut in the shape of...Ch. 9.5 - A ring with a mass m is cut from a thin uniform...Ch. 9.5 - A thin elliptical plate has a mass m. Determine...Ch. 9.5 - The parabolic spandrel shown was cut from a thin,...Ch. 9.5 - Prob. 9.115PCh. 9.5 - Fig. P9.115 and P9.116 9.116 A piece of thin,...Ch. 9.5 - A thin plate of mass m is cut in the shape of an...Ch. 9.5 - Fig. P9.117 and P9.118 9.118 A thin plate of mass...Ch. 9.5 - Determine by direct integration the mass moment of...Ch. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - Determine by direct integration the mass moment of...Ch. 9.5 - Fig. P9.122 and P9.123 9.123 Determine by direct...Ch. 9.5 - Prob. 9.124PCh. 9.5 - Prob. 9.125PCh. 9.5 - Prob. 9.126PCh. 9.5 - Prob. 9.127PCh. 9.5 - Prob. 9.128PCh. 9.5 - Prob. 9.129PCh. 9.5 - Knowing that the thin cylindrical shell shown has...Ch. 9.5 - A circular hole of radius r is to be drilled...Ch. 9.5 - The cups and the arms of an anemometer are...Ch. 9.5 - Prob. 9.133PCh. 9.5 - Determine the mass moment of inertia of the 0.9-lb...Ch. 9.5 - Prob. 9.135PCh. 9.5 - Prob. 9.136PCh. 9.5 - A 2-mm thick piece of sheet steel is cut and bent...Ch. 9.5 - A section of sheet steel 0.03 in. thick is cut and...Ch. 9.5 - A corner reflector for tracking by radar has two...Ch. 9.5 - A farmer constructs a trough by welding a...Ch. 9.5 - The machine element shown is fabricated from...Ch. 9.5 - Determine the mass moments of inertia and the...Ch. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Prob. 9.144PCh. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Aluminum wire with a weight per unit length of...Ch. 9.5 - The figure shown is formed of 18-in.-diameter...Ch. 9.5 - A homogeneous wire with a mass per unit length of...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.154PCh. 9.6 - Prob. 9.155PCh. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - Prob. 9.157PCh. 9.6 - Prob. 9.158PCh. 9.6 - Prob. 9.159PCh. 9.6 - Prob. 9.160PCh. 9.6 - Prob. 9.161PCh. 9.6 - For the homogeneous tetrahedron of mass m shown,...Ch. 9.6 - Prob. 9.163PCh. 9.6 - Prob. 9.164PCh. 9.6 - Prob. 9.165PCh. 9.6 - Determine the mass moment of inertia of the steel...Ch. 9.6 - Prob. 9.167PCh. 9.6 - Prob. 9.168PCh. 9.6 - Prob. 9.169PCh. 9.6 - 9.170 through 9.172 For the wire figure of the...Ch. 9.6 - Prob. 9.171PCh. 9.6 - Prob. 9.172PCh. 9.6 - Prob. 9.173PCh. 9.6 - Prob. 9.174PCh. 9.6 - Prob. 9.175PCh. 9.6 - Prob. 9.176PCh. 9.6 - Prob. 9.177PCh. 9.6 - Prob. 9.178PCh. 9.6 - Prob. 9.179PCh. 9.6 - Prob. 9.180PCh. 9.6 - Prob. 9.181PCh. 9.6 - Prob. 9.182PCh. 9.6 - Prob. 9.183PCh. 9.6 - Prob. 9.184PCh. 9 - Determine by direct integration the moments of...Ch. 9 - Determine the moment of inertia and the radius of...Ch. 9 - Prob. 9.187RPCh. 9 - Prob. 9.188RPCh. 9 - Prob. 9.189RPCh. 9 - Two L4 4 12-in. angles are welded to a steel...Ch. 9 - Prob. 9.191RPCh. 9 - Prob. 9.192RPCh. 9 - Prob. 9.193RPCh. 9 - Prob. 9.194RPCh. 9 - Prob. 9.195RPCh. 9 - Determine the mass moment of inertia of the steel...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY