EBK VECTOR MECHANICS FOR ENGINEERS: STA
EBK VECTOR MECHANICS FOR ENGINEERS: STA
12th Edition
ISBN: 8220106797068
Author: BEER
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9.5, Problem 9.135P

9.135 and 9.136 A 2-mm thick piece of sheet steel is cut and bent into the machine component shown. Knowing that the density of steel is 7850 kg/m3, determine the mass moment of inertia of the component with respect to each of the coordinate axes.

Chapter 9.5, Problem 9.135P, 9.135 and 9.136 A 2-mm thick piece of sheet steel is cut and bent into the machine component shown.

Fig. P9.135

Expert Solution & Answer
Check Mark
To determine

Find the mass moment of inertia of the component with respect to x,y,z coordinate axes.

Answer to Problem 9.135P

The mass moment of inertia of the component with respect to x coordinate axes is 7.11×103kgm2_

The mass moment of inertia of the component with respect to y coordinate axes is 16.96×103kgm2_

The mass moment of inertia of the component with respect to z coordinate axes is 15.27×103kgm2_.

Explanation of Solution

Given information:

The thickness (t) of sheet steel is 2mm.

The density ρ of steel is 7,850kg/m3.

Calculation:

Sketch the sheet steel as shown in Figure 1.

EBK VECTOR MECHANICS FOR ENGINEERS: STA, Chapter 9.5, Problem 9.135P

Find the mass of rectangular section 1 as shown in below:

m1=ρV1 (1)

Here, V1 is volume of rectangular section 1.

Express the volume of rectangular section 1 as follows:

V1=lwt

Substitute 120mm for l, 200mm for w, 7,850kg/m3 for ρ, and 2mm for t in Equation (1).

m1=7,850×[120mm(1m103m)×200mm(1m103m)×2mm(1m103m)]=7,850[0.120×0.200×0.002]=7,850[0.000048]=0.3768kg

Find the mass of rectangular section 2 as shown in below:

m2=ρV2 (2)

Here, V2 is volume of rectangular section 2.

Express the volume of rectangular section 2 as follows:

V2=lwt

Substitute 120mm for l, 100mm for w, 7,850kg/m3 for ρ, and 2mm for t in Equation (2).

m2=7,850×[120mm(1m103m)×100mm(1m103m)×2mm(1m103m)]=7,850[0.120×0.100×0.002]=7,850[0.000024]=0.1884kg

Panel 1:

Find the moment of inertia about x axis for panel 1 as shown below:

Ix=I¯x+md2=112(m1h2)+m1(d2) (3)

Substitute 0.3768kg for m1, 120mm for h, and (10+60)mm for d in Equation (3).

Ix=112(0.3768)(120mm×1m103mm)2+(0.3768)((100mm×1m103mm)2+(60mm×1m103mm)2)=112(0.3768)(0.12)2+(0.3768)(0.12+0.062)=0.00045216+0.00512448=5.5766×103

=5.577×103kgm2

Find the moment of inertia about y axis for panel 1 as shown below:

Iy=I¯y+md2=112(m1h2)+m1(d2) (4)

Substitute 0.3768kg for m1, 200mm for h, and (100+100)mm for d in Equation (4).

Iy=112(0.3768)(200mm×1m103mm)2+(0.3768)(100mm×1m103mm+100mm×1m103mm)=112(0.3768)(0.2)2+(0.3768)(0.12+0.12)=0.001256+0.007536=8.792×103kgm2

Find the moment of inertia about z axis for panel 1 as shown below:

Iz=I¯z+md2 (5)

Substitute 0.3768kg for m1, 112(0.3768[0.22+0.122]) for I¯z, and (100+60)mm for d in Equation (5).

Iz=112(0.3768[0.22+0.122])+0.3768[(100mm(1m103mm)2+60mm(1m103mm)2)]=0.00170816+0.005124=6.833×103kgm2

Panel 2:

Find the moment of inertia about x axis for panel 2 as shown below:

Ix=I¯x+md2 (6)

Substitute 0.1884kg for m2, 112(0.1884)[0.122+0.12] for I¯x, and (50+60)mm for d in Equation (6).

Ix=112(0.1884)[0.122+0.12]+(0.1884)((50mm×1m103mm)2+(60mm×1m103mm)2)=112(0.1884)[0.122+0.12]+(0.1884)(0.052+0.062)=3.8308×104+0.00114924=1.532×103kgm2

Find the moment of inertia about y axis for panel 2 as shown below:

Iy=I¯y+md2=112(m2h2)+m2(d2) (7)

Substitute 0.1884kg for m2, 100mm for h, and (5+200)mm for d in Equation (7).

Iy=112(0.1884)(100mm×1m103mm)2+(0.1884)5(50mm×1m103mm+200mm×1m103mm)=112(0.1884)(0.1)2+(0.1884)(0.052+0.22)=0.000157+0.00800=8.164×103kgm2

Find the moment of inertia about z axis for panel 2 as shown below:

Iz=I¯z+md2=112(m2h2)+m2(d2) (8)

Substitute 0.1884kg for m2, 120mm for h, and (6+200)mm for d in Equation (8).

Iz=112(0.1884)(120mm×1m103mm)2+(0.1884)5(60mm×1m103mm+200mm×1m103mm)=112(0.1884)(0.12)2+(0.1884)(0.062+0.22)=0.00022608+0.008214=8.44×103kgm2

Find the total mass of inertia (Ix) about x axis as shown below:

Ix=(Ix)1+(Ix)2 (9)

Here, (Ix)1 is moment of inertia about x panel 1 and (Ix)2 is moment of inertia about x panel 2.

Substitute 5.577×103kgm2 for (Ix)1 and 1.532×103kgm2 for (Ix)2 in Equation (9).

Ix=5.577×103+1.532×103=7.11×103kgm2

Thus, the mass moment of inertia of the component with respect to x coordinate axes is 7.11×103kgm2_

Find the total mass of inertia (Iy) about y axis as shown below:

Iy=(Iy)1+(Iy)2 (10)

Here, (Iy)1 is moment of inertia about x panel 1 and (Iy)2 is moment of inertia about x panel 2.

Substitute 8.792×103kgm2 for  (Iy)1 and 8.164×103kgm2 for (Iy)2 in Equation (10).

Iy=8.792×103+8.164×103=16.96×103kgm2

Thus, the mass moment of inertia of the component with respect to y coordinate axes is 16.96×103kgm2_

Find the total mass of inertia (Iz) about z axis as shown below:

Iz=(Iz)1+(Iz)2 (11)

Here, (Iz)1 is moment of inertia about x panel 2 and (Iz)2 is moment of inertia about x panel 2.

Substitute 6.833×103kgm2 for (Iz)1 and 8.440×103kgm2 for (Iz)2 in Equation (11).

Iy=6.833×103+8.440×103=15.27×103kgm2

Thus, the mass moment of inertia of the component with respect to z coordinate axes is 15.27×103kgm2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
B.33 Determine the mass moment of inertia of the steel machine element shown with respect to the axis. (The density of steel is 7850 kg/m³.) 50 mm 50 in 240 mi 360 im 100 mm Fig. PB.32 and PB.33 200 mm
A farmer constructs a trough by welding a rectangular piece of 2-mm-thick sheet steel to half of a steel drum. Knowing that the density of steel is 7850 kg/m3 and that the thickness of the walls of the drum is 1.8 mm, determine the mass moment of inertia of the trough with respect to each of the coordinate axes. Neglect the mass of the welds.
A 2-mm thick piece of sheet steel is cut and bent into the machine component shown. Knowing that the density of steel is 7850 kg/m3 , determine the mass moment of inertia of the component with respect to each of the coordinate axes.

Chapter 9 Solutions

EBK VECTOR MECHANICS FOR ENGINEERS: STA

Ch. 9.1 - 9.9 through 9.11 Determine by direct integration...Ch. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - Prob. 9.13PCh. 9.1 - 9.12 through 9.14 Determine by direct integration...Ch. 9.1 - 9.15 and 9.16 Determine the moment of inertia and...Ch. 9.1 - Prob. 9.16PCh. 9.1 - 9.17 and 9.18 Determine the moment of inertia and...Ch. 9.1 - Prob. 9.18PCh. 9.1 - Determine the moment of inertia and the radius of...Ch. 9.1 - Prob. 9.20PCh. 9.1 - Prob. 9.21PCh. 9.1 - Determine the polar moment of inertia and the...Ch. 9.1 - 9.23 and 9.24 Determine the polar moment of...Ch. 9.1 - 9.23 and 9.24 Determine the polar moment of...Ch. 9.1 - (a) Determine by direct integration the polar...Ch. 9.1 - (a) Show that the polar radius of gyration kQ of...Ch. 9.1 - Determine the polar moment of inertia and the...Ch. 9.1 - Determine the polar moment of inertia and the...Ch. 9.1 - Using the polar moment of inertia of the isosceles...Ch. 9.1 - Prove that the centroidal polar moment of inertia...Ch. 9.2 - 9.31 and 9.32 Determine the moment of inertia and...Ch. 9.2 - 9.31 and 9.32 Determine the moment of inertia and...Ch. 9.2 - 9.33 and 9.34 Determine the moment of inertia and...Ch. 9.2 - 9.33 and 9.34 Determine the moment of inertia and...Ch. 9.2 - Prob. 9.35PCh. 9.2 - Determine the moments of inertia of the shaded...Ch. 9.2 - Prob. 9.37PCh. 9.2 - Fig. P9.37 and P9.38 9.38 Knowing that the shaded...Ch. 9.2 - Prob. 9.39PCh. 9.2 - Fig. P9.39 and P9.40 9.40 The polar moments of...Ch. 9.2 - Prob. 9.41PCh. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - 9.41 through 9.44 Determine the moments of inertia...Ch. 9.2 - 9.45 and 9.46 Determine the polar moment of...Ch. 9.2 - 9.45 and 9.46 Determine the polar moment of...Ch. 9.2 - Prob. 9.47PCh. 9.2 - Prob. 9.48PCh. 9.2 - Prob. 9.49PCh. 9.2 - Prob. 9.50PCh. 9.2 - Four L3 3 14 - in. angles are welded to a rolled...Ch. 9.2 - Two 20-mm steel plates are welded to a rolled S...Ch. 9.2 - A channel and a plate are welded together as shown...Ch. 9.2 - The strength of the rolled W section shown is...Ch. 9.2 - Two L76 76 6.4-mm angles are welded to a C250 ...Ch. 9.2 - Two steel plates are welded to a rolled W section...Ch. 9.2 - 9.57 and 9.58 The panel shown forms the end of a...Ch. 9.2 - 9.57 and 9.58 The panel shown forms the end of a...Ch. 9.2 - 9.59 and 9.60 The panel shown forms the end of a...Ch. 9.2 - 9.59 and 9.60 The panel shown forms the end of a...Ch. 9.2 - A vertical trapezoidal gate that is used as an...Ch. 9.2 - The cover for a 0.5-m-diameter access hole in a...Ch. 9.2 - Determine the x coordinate of the centroid of the...Ch. 9.2 - Determine the x coordinate of the centroid of the...Ch. 9.2 - Show that the system of hydrostatic forces acting...Ch. 9.2 - Show that the resultant of the hydrostatic forces...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - 9.67 through 9.70 Determine by direct integration...Ch. 9.3 - Prob. 9.70PCh. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - 9.71 through 9.74 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.74PCh. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Prob. 9.78PCh. 9.3 - Determine for the quarter ellipse of Prob. 9.67...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - 9.75 through 9.78 Using the parallel-axis theorem,...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Determine the moments of inertia and the product...Ch. 9.3 - Prob. 9.85PCh. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - 9.86 through 9.88 For the area indicated,...Ch. 9.3 - 9.89 and 9.90 For the angle cross section...Ch. 9.3 - 9.89 and 9.90 For the angle cross section...Ch. 9.4 - Using Mohrs circle, determine for the quarter...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - Using Mohrs circle, determine the moments of...Ch. 9.4 - For the quarter ellipse of Prob. 9.67, use Mohrs...Ch. 9.4 - Prob. 9.98PCh. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - 9.98 though 9.102 Using Mohrs circle, determine...Ch. 9.4 - 9.98 through 9.102 Using Mohrs circle, determine...Ch. 9.4 - 9.98 through 9.102 Using Mohrs circle, determine...Ch. 9.4 - Prob. 9.103PCh. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - 9.104 and 9.105 Using Mohrs circle, determine the...Ch. 9.4 - Prob. 9.106PCh. 9.4 - it is known that for a given area Iy = 48 106 mm4...Ch. 9.4 - Prob. 9.108PCh. 9.4 - Using Mohrs circle, prove that the expression...Ch. 9.4 - Using the invariance property established in the...Ch. 9.5 - A thin plate with a mass m is cut in the shape of...Ch. 9.5 - A ring with a mass m is cut from a thin uniform...Ch. 9.5 - Prob. 9.113PCh. 9.5 - The parabolic spandrel shown was cut from a thin,...Ch. 9.5 - Prob. 9.115PCh. 9.5 - Fig. P9.115 and P9.116 9.116 A piece of thin,...Ch. 9.5 - A thin plate of mass m is cut in the shape of an...Ch. 9.5 - Prob. 9.118PCh. 9.5 - Prob. 9.119PCh. 9.5 - The area shown is revolved about the x axis to...Ch. 9.5 - Prob. 9.121PCh. 9.5 - Determine by direct integration the mass moment of...Ch. 9.5 - Fig. P9.122 and P9.123 9.123 Determine by direct...Ch. 9.5 - Determine by direct integration the mass moment of...Ch. 9.5 - Prob. 9.125PCh. 9.5 - A thin steel wire is bent into the shape shown....Ch. 9.5 - Shown is the cross section of an idler roller....Ch. 9.5 - Shown is the cross section of a molded flat-belt...Ch. 9.5 - Prob. 9.129PCh. 9.5 - Knowing that the thin cylindrical shell shown has...Ch. 9.5 - A circular hole of radius r is to be drilled...Ch. 9.5 - Prob. 9.132PCh. 9.5 - After a period of use, one of the blades of a...Ch. 9.5 - Determine the mass moment of inertia of the 0.9-lb...Ch. 9.5 - 9.135 and 9.136 A 2-mm thick piece of sheet steel...Ch. 9.5 - 9.135 and 9.136 A 2 -mm thick piece of sheet steel...Ch. 9.5 - Prob. 9.137PCh. 9.5 - A section of sheet steel 0.03 in. thick is cut and...Ch. 9.5 - Prob. 9.139PCh. 9.5 - Prob. 9.140PCh. 9.5 - The machine element shown is fabricated from...Ch. 9.5 - Determine the mass moments of inertia and the...Ch. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Fig. P9.143 and P9.144 9.144 Determine the mass...Ch. 9.5 - Determine the mass moment of inertia of the steel...Ch. 9.5 - Aluminum wire with a weight per unit length of...Ch. 9.5 - The figure shown is formed of 18-in.-diameter...Ch. 9.5 - A homogeneous wire with a mass per unit length of...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Determine the mass products of inertia Ixy, Iyz,...Ch. 9.6 - Prob. 9.153PCh. 9.6 - Prob. 9.154PCh. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - 9.153 through 9.156 A section of sheet steel 2 mm...Ch. 9.6 - The figure shown is formed of 1.5-mm-diameter...Ch. 9.6 - Prob. 9.158PCh. 9.6 - 9.159 and 9.160 Brass wire with a weight per unit...Ch. 9.6 - Fig. P9.160 9.159 and 9.160 Brass wire with a...Ch. 9.6 - Complete the derivation of Eqs. (9.47) that...Ch. 9.6 - Prob. 9.162PCh. 9.6 - Prob. 9.163PCh. 9.6 - Prob. 9.164PCh. 9.6 - Shown is the machine element of Prob. 9.141....Ch. 9.6 - Determine the mass moment of inertia of the steel...Ch. 9.6 - The thin, bent plate shown is of uniform density...Ch. 9.6 - A piece of sheet steel with thickness t and...Ch. 9.6 - Determine the mass moment of inertia of the...Ch. 9.6 - 9.170 through 9.172 For the wire figure of the...Ch. 9.6 - Prob. 9.171PCh. 9.6 - 9.172 Prob. 9.146 9.146 Aluminum wire with a...Ch. 9.6 - For the homogeneous circular cylinder shown with...Ch. 9.6 - For the rectangular prism shown, determine the...Ch. 9.6 - Prob. 9.175PCh. 9.6 - Prob. 9.176PCh. 9.6 - Consider a cube with mass m and side a. (a) Show...Ch. 9.6 - Prob. 9.178PCh. 9.6 - Prob. 9.179PCh. 9.6 - 9.180 through 9.184 For the component described in...Ch. 9.6 - 9.180 through 9.184 For the component described in...Ch. 9.6 - Prob. 9.182PCh. 9.6 - 9.180 through 9.184 For the component described in...Ch. 9.6 - 9.180 through 9.184 For the component described in...Ch. 9 - Determine by direct integration the moments of...Ch. 9 - Determine the moment of inertia and the radius of...Ch. 9 - Determine the moment of inertia and the radius of...Ch. 9 - Determine the moments of inertia Ix and Iy of the...Ch. 9 - Determine the polar moment of inertia of the area...Ch. 9 - Two L4 4 12-in. angles are welded to a steel...Ch. 9 - Using the parallel-axis theorem, determine the...Ch. 9 - Prob. 9.192RPCh. 9 - Fig. P9.193 and P9.194 9.193 A thin plate with a...Ch. 9 - Fig. P9.193 and P9.194 9.194 A thin plate with...Ch. 9 - A 2-mm-thick piece of sheet steel is cut and bent...Ch. 9 - Determine the mass moment of inertia of the steel...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY