Algebra and Trigonometry
4th Edition
ISBN: 9781305719781
Author: James Stewart, Lothar Redlin, Saleem Watson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.4, Problem 27E
To determine
To find:
The dot product
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
10-2
Let A =
02-4
and b =
4
Denote the columns of A by a₁, a2, a3, and let W = Span {a1, a2, a̸3}.
-4 6
5
- 35
a. Is b in {a1, a2, a3}? How many vectors are in {a₁, a₂, a3}?
b. Is b in W? How many vectors are in W?
c. Show that a2 is in W. [Hint: Row operations are unnecessary.]
a. Is b in {a₁, a2, a3}? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your
choice.
○ A. No, b is not in {a₁, a2, 3} since it cannot be generated by a linear combination of a₁, a2, and a3.
B. No, b is not in (a1, a2, a3}
since b is not equal to a₁, a2, or a3.
C. Yes, b is in (a1, a2, a3} since b = a
(Type a whole number.)
D. Yes, b is in (a1, a2, 3} since, although b is not equal to a₁, a2, or a3, it can be expressed as a linear
combination of them. In particular, b =
+
+
☐ az.
(Simplify your answers.)
14
14
4. The graph shows the printing rate of Printer A. Printer B can
print at a rate of 25 pages per minute. How does the printing
rate for Printer B compare to the printing rate for Printer A?
The printing rate for Printer B is
than the rate
for Printer A because the rate of 25 pages per minute
is
than the rate of
for Printer A.
pages per minute
RIJOUT
40
fy
Printer Rat
Number of Pages
8N WA
10
30
20
Printer A
0
0
246
Time (min)
X
OR
16 f(x) =
Ef 16
χ
по
x²-2 410 | y = (x+2) + 4
Y-INT: y = 0
X-INT: X=0
VA: x=2
OA: y=x+2
0
X-INT: X=-2
X-INT: y = 2
VA
0
2
whole.
2-2
4
y - (x+2) = 27-270
+
xxx> 2
क्
above OA
(x+2) OA
x-2/x²+0x+0
2
x-2x
2x+O
2x-4
4
X<-1000 4/4/2<0 below Of
y
VA
X=2
X-2
OA
y=x+2
-2
2
(0,0)
2
χ
Chapter 9 Solutions
Algebra and Trigonometry
Ch. 9.1 - Prob. 1ECh. 9.1 - CONCEPTS 2. a The length of a vector w=a1,a2 is...Ch. 9.1 - 38 Sketching Vectors Sketch the vector indicated....Ch. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - SKILLS 3-8 Sketching Vectors Sketch the vector...Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - Prob. 10E
Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - 19-22Sketching VectorsSketch the given vector with...Ch. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - 27-30Writing Vectors in terms of i and jWrite the...Ch. 9.1 - Prob. 29ECh. 9.1 - Prob. 30ECh. 9.1 - Prob. 31ECh. 9.1 - 31-36 Operations with vectors Find 2u, 3v, u+v,...Ch. 9.1 - Prob. 33ECh. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Prob. 42ECh. 9.1 - Prob. 43ECh. 9.1 - Prob. 44ECh. 9.1 - Prob. 45ECh. 9.1 - Prob. 46ECh. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.1 - Prob. 51ECh. 9.1 - Prob. 52ECh. 9.1 - Prob. 53ECh. 9.1 - Components of a VelocityA jet is flying in a...Ch. 9.1 - Prob. 55ECh. 9.1 - VelocitySuppose that in Exercise 55 the current is...Ch. 9.1 - VelocityThe speed of an airplane is 300 mi/h...Ch. 9.1 - Prob. 58ECh. 9.1 - Prob. 59ECh. 9.1 - Prob. 60ECh. 9.1 - True Velocity of a JetFind the true speed and...Ch. 9.1 - Prob. 62ECh. 9.1 - Prob. 63ECh. 9.1 - Velocity of a Boat The boater in Exercise 63 wants...Ch. 9.1 - Prob. 65ECh. 9.1 - Prob. 66ECh. 9.1 - Prob. 67ECh. 9.1 - Prob. 68ECh. 9.1 - Prob. 69ECh. 9.1 - Prob. 70ECh. 9.1 - Prob. 71ECh. 9.1 - Prob. 72ECh. 9.1 - Prob. 73ECh. 9.1 - Equilibrium of Tensions The cranes in the figure...Ch. 9.1 - Prob. 75ECh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - SKILLS 29-34Vector Projection of uonto va...Ch. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - Prob. 49ECh. 9.2 - Prob. 50ECh. 9.2 - Prob. 51ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.4 - A vector in three dimensions can be written in...Ch. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - Prob. 6ECh. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - Prob. 19ECh. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - Prob. 23ECh. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.4 - Prob. 27ECh. 9.4 - Prob. 28ECh. 9.4 - Prob. 29ECh. 9.4 - Prob. 30ECh. 9.4 - Prob. 31ECh. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.4 - Prob. 36ECh. 9.4 - Prob. 37ECh. 9.4 - Prob. 38ECh. 9.4 - Prob. 39ECh. 9.4 - Prob. 40ECh. 9.4 - Prob. 41ECh. 9.4 - Prob. 42ECh. 9.4 - Prob. 43ECh. 9.4 - Prob. 44ECh. 9.4 - Prob. 45ECh. 9.4 - Prob. 46ECh. 9.4 - Prob. 47ECh. 9.4 - Prob. 48ECh. 9.4 - Prob. 49ECh. 9.4 - Central Angle of a Tetrahedron A tetrahedron is a...Ch. 9.4 - Prob. 51ECh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - Prob. 21ECh. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - Prob. 25ECh. 9.5 - Prob. 26ECh. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - Prob. 30ECh. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 37ECh. 9.6 - Prob. 1ECh. 9.6 - Prob. 2ECh. 9.6 - Prob. 3ECh. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Prob. 8ECh. 9.6 - Prob. 9ECh. 9.6 - Prob. 10ECh. 9.6 - Prob. 11ECh. 9.6 - Prob. 12ECh. 9.6 - Prob. 13ECh. 9.6 - Prob. 14ECh. 9.6 - Prob. 15ECh. 9.6 - Prob. 16ECh. 9.6 - Prob. 17ECh. 9.6 - Prob. 18ECh. 9.6 - Prob. 19ECh. 9.6 - Prob. 20ECh. 9.6 - Prob. 21ECh. 9.6 - Prob. 22ECh. 9.6 - Prob. 23ECh. 9.6 - Prob. 24ECh. 9.6 - Prob. 25ECh. 9.6 - Prob. 26ECh. 9.6 - Prob. 27ECh. 9.6 - Prob. 28ECh. 9.6 - Prob. 29ECh. 9.6 - Prob. 30ECh. 9.6 - Prob. 31ECh. 9.6 - Prob. 32ECh. 9.6 - Prob. 33ECh. 9.6 - Prob. 34ECh. 9.6 - Prob. 35ECh. 9.6 - Prob. 36ECh. 9.6 - Prob. 37ECh. 9.CR - aWhat is a vector in the plane? How do we...Ch. 9.CR - Prob. 2CCCh. 9.CR - Prob. 3CCCh. 9.CR - Prob. 4CCCh. 9.CR - Prob. 5CCCh. 9.CR - Prob. 6CCCh. 9.CR - Prob. 7CCCh. 9.CR - Prob. 8CCCh. 9.CR - Prob. 9CCCh. 9.CR - Prob. 10CCCh. 9.CR - Prob. 1ECh. 9.CR - Prob. 2ECh. 9.CR - Prob. 3ECh. 9.CR - Prob. 4ECh. 9.CR - Prob. 5ECh. 9.CR - Prob. 6ECh. 9.CR - Prob. 7ECh. 9.CR - Prob. 8ECh. 9.CR - Prob. 9ECh. 9.CR - Prob. 10ECh. 9.CR - Prob. 11ECh. 9.CR - True Velocity of a PlaneAn airplane heads N60E at...Ch. 9.CR - Prob. 13ECh. 9.CR - Prob. 14ECh. 9.CR - Prob. 15ECh. 9.CR - Prob. 16ECh. 9.CR - Prob. 17ECh. 9.CR - Prob. 18ECh. 9.CR - Prob. 19ECh. 9.CR - Prob. 20ECh. 9.CR - Prob. 21ECh. 9.CR - Prob. 22ECh. 9.CR - Prob. 23ECh. 9.CR - Prob. 24ECh. 9.CR - Prob. 25ECh. 9.CR - Prob. 26ECh. 9.CR - Prob. 27ECh. 9.CR - Prob. 28ECh. 9.CR - Prob. 29ECh. 9.CR - Prob. 30ECh. 9.CR - Prob. 31ECh. 9.CR - Prob. 32ECh. 9.CR - Prob. 33ECh. 9.CR - Prob. 34ECh. 9.CR - Prob. 35ECh. 9.CR - Prob. 36ECh. 9.CR - Prob. 37ECh. 9.CR - Prob. 38ECh. 9.CR - Prob. 39ECh. 9.CR - Prob. 40ECh. 9.CR - Prob. 41ECh. 9.CR - Prob. 42ECh. 9.CR - Prob. 43ECh. 9.CR - Prob. 44ECh. 9.CR - Prob. 45ECh. 9.CR - Prob. 46ECh. 9.CR - Prob. 47ECh. 9.CR - Prob. 48ECh. 9.CR - Prob. 49ECh. 9.CR - Prob. 50ECh. 9.CR - Prob. 51ECh. 9.CR - Prob. 52ECh. 9.CR - Prob. 53ECh. 9.CR - Prob. 54ECh. 9.CT - TEST Let u be the vector with the initial point...Ch. 9.CT - TEST Let u=1,3 and v=6,2. a Find u3v. b Find...Ch. 9.CT - Prob. 3CTCh. 9.CT - Prob. 4CTCh. 9.CT - Prob. 5CTCh. 9.CT - Prob. 6CTCh. 9.CT - Prob. 7CTCh. 9.CT - Prob. 8CTCh. 9.CT - Prob. 9CTCh. 9.CT - Prob. 10CTCh. 9.CT - Prob. 11CTCh. 9.FOM - Prob. 1PCh. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - Prob. 5PCh. 9.FOM - Prob. 6PCh. 9.FOM - Prob. 7PCh. 9.FOM - Prob. 8PCh. 9.FOM - Prob. 9PCh. 9.FOM - Prob. 10PCh. 9.FOM - Prob. 11PCh. 9.FOM - Prob. 12PCh. 9.FOM - Prob. 13PCh. 9.FOM - Prob. 14PCh. 9.FOM - Prob. 15PCh. 9.FOM - Prob. 16PCh. 9.FOM - Prob. 17PCh. 9.FOM - Prob. 18PCh. 9.FOM - Prob. 19P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- I need help solving the equation 3x+5=8arrow_forwardWhat is the domain, range, increasing intervals (theres 3), decreasing intervals, roots, y-intercepts, end behavior (approaches four times), leading coffiencent status (is it negative, positivie?) the degress status (zero, undifined etc ), the absolute max, is there a absolute minimum, relative minimum, relative maximum, the root is that has a multiplicity of 2, the multiplicity of 3.arrow_forwardWhat is the vertex, axis of symmerty, all of the solutions, all of the end behaviors, the increasing interval, the decreasing interval, describe all of the transformations that have occurred EXAMPLE Vertical shrink/compression (wider). or Vertical translation down, the domain and range of this graph EXAMPLE Domain: x ≤ -1 Range: y ≥ -4.arrow_forward
- 4. Select all of the solutions for x²+x - 12 = 0? A. -12 B. -4 C. -3 D. 3 E 4 F 12 4 of 10arrow_forward2. Select all of the polynomials with the degree of 7. A. h(x) = (4x + 2)³(x − 7)(3x + 1)4 B h(x) = (x + 7)³(2x + 1)^(6x − 5)² ☐ Ch(x)=(3x² + 9)(x + 4)(8x + 2)ª h(x) = (x + 6)²(9x + 2) (x − 3) h(x)=(-x-7)² (x + 8)²(7x + 4)³ Scroll down to see more 2 of 10arrow_forward1. If all of the zeros for a polynomial are included in the graph, which polynomial could the graph represent? 100 -6 -2 0 2 100 200arrow_forward
- 3. Select the polynomial that matches the description given: Zero at 4 with multiplicity 3 Zero at −1 with multiplicity 2 Zero at -10 with multiplicity 1 Zero at 5 with multiplicity 5 ○ A. P(x) = (x − 4)³(x + 1)²(x + 10)(x — 5)³ B - P(x) = (x + 4)³(x − 1)²(x − 10)(x + 5)³ ○ ° P(x) = (1 − 3)'(x + 2)(x + 1)"'" (x — 5)³ 51 P(r) = (x-4)³(x − 1)(x + 10)(x − 5 3 of 10arrow_forwardMatch the equation, graph, and description of transformation. Horizontal translation 1 unit right; vertical translation 1 unit up; vertical shrink of 1/2; reflection across the x axis Horizontal translation 1 unit left; vertical translation 1 unit down; vertical stretch of 2 Horizontal translation 2 units right; reflection across the x-axis Vertical translation 1 unit up; vertical stretch of 2; reflection across the x-axis Reflection across the x - axis; vertical translation 2 units down Horizontal translation 2 units left Horizontal translation 2 units right Vertical translation 1 unit down; vertical shrink of 1/2; reflection across the x-axis Vertical translation 2 units down Horizontal translation 1 unit left; vertical translation 2 units up; vertical stretch of 2; reflection across the x - axis f(x) = - =-½ ½ (x − 1)²+1 f(x) = x²-2 f(x) = -2(x+1)²+2 f(x)=2(x+1)²-1 f(x)=-(x-2)² f(x)=(x-2)² f(x) = f(x) = -2x²+1 f(x) = -x²-2 f(x) = (x+2)²arrow_forwardWhat is the vertex, increasing interval, decreasing interval, domain, range, root/solution/zero, and the end behavior?arrow_forward
- The augmented matrix of a linear system has been reduced by row operations to the form shown. Continue the appropriate row operations and describe the solution set of the original system. 1 -1 0 1 -2 00-4 0-6 0 0 1 - 3 3 0 001 4arrow_forwardSolve the system. X1 - 3x3 = 10 4x1 + 2x2 + 3x3 = 22 ×2 + 4x3 = -2arrow_forwardUse the quadratic formula to find the zeros of the quadratic equation. Y=3x^2+48x+180arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Vector Components and Projections in 3-Dimensions; Author: turksvids;https://www.youtube.com/watch?v=DfIsa7ArxSo;License: Standard YouTube License, CC-BY
Linear Algebra 6.2.2 Orthogonal Projections; Author: Kimberly Brehm;https://www.youtube.com/watch?v=fqbwErsP8Xw;License: Standard YouTube License, CC-BY