Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.4, Problem 21E
Limits Evaluate the following limits using Taylor series.
21.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1
Evaluate the limit by expressing the functions involved as a Taylor Series.
1-cost-(t²/2)
t4
(Remember there are some algebra involved!)
lim
t->0
Use series to evaluate the limits
Series
∞
n
is a divergent series. Which of the following test(s) can be used to show its divergence.
n=1 n²+1
(A). The Divergence Test
(B). The Integral Test
(C). The Limit Comparison Test
(D). The Ratio Test
Chapter 9 Solutions
Calculus: Early Transcendentals (2nd Edition)
Ch. 9.1 - Suppose you use a second-order Taylor polynomial...Ch. 9.1 - Does the accuracy of an approximation given by a...Ch. 9.1 - The first three Taylor polynomials for f(x)=1+x...Ch. 9.1 - Prob. 4ECh. 9.1 - How is the remainder Rn(x) in a Taylor polynomial...Ch. 9.1 - Explain how to estimate the remainder in an...Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Linear and quadratic approximation a. Find the...
Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Linear and quadratic approximation a. Find the...Ch. 9.1 - Taylor polynomials a. Find the nth-order Taylor...Ch. 9.1 - Taylor polynomials a. Find the nth-order Taylor...Ch. 9.1 - Taylor polynomials a. Find the nth-order Taylor...Ch. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Approximations with Taylor polynomials a. Use the...Ch. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Approximations with Taylor polynomials a. Use the...Ch. 9.1 - Approximations with Taylor polynomials a. Use the...Ch. 9.1 - Prob. 28ECh. 9.1 - Taylor polynomials centered at a 0 a. Find the...Ch. 9.1 - Taylor polynomials centered at a 0 a. Find the...Ch. 9.1 - Prob. 31ECh. 9.1 - Prob. 32ECh. 9.1 - Prob. 33ECh. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Prob. 45ECh. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Approximations with Taylor polynomials a....Ch. 9.1 - Prob. 48ECh. 9.1 - Remainders Find the remainder Rn for the nth-order...Ch. 9.1 - Remainders Find the remainder Rn for the nth-order...Ch. 9.1 - Prob. 51ECh. 9.1 - Remainders Find the remainder Rn for the nth-order...Ch. 9.1 - Remainders Find the remainder Rn for the nth-order...Ch. 9.1 - Remainders Find the remainder Rn for the nth-order...Ch. 9.1 - Estimating errors Use the remainder to find a...Ch. 9.1 - Estimating errors Use the remainder to find a...Ch. 9.1 - Estimating errors Use the remainder to find a...Ch. 9.1 - Estimating errors Use the remainder to find a...Ch. 9.1 - Estimating errors Use the remainder to find a...Ch. 9.1 - Estimating errors Use the remainder to find a...Ch. 9.1 - Error bounds Use the remainder to find a bound on...Ch. 9.1 - Prob. 62ECh. 9.1 - Error bounds Use the remainder to find a bound on...Ch. 9.1 - Error bounds Use the remainder to find a bound on...Ch. 9.1 - Error bounds Use the remainder to find a bound on...Ch. 9.1 - Error bounds Use the remainder to find a bound on...Ch. 9.1 - Number of terms What is the minimum order of the...Ch. 9.1 - Number of terms What is the minimum order of the...Ch. 9.1 - Number of terms What is the minimum order of the...Ch. 9.1 - Number of terms What is the minimum order of the...Ch. 9.1 - Number of terms What is the minimum order of the...Ch. 9.1 - Number of terms What is the minimum order of the...Ch. 9.1 - Explain why or why not Determine whether the...Ch. 9.1 - Prob. 74ECh. 9.1 - Matching functions with polynomials Match...Ch. 9.1 - Prob. 76ECh. 9.1 - Small argument approximations Consider the...Ch. 9.1 - Prob. 78ECh. 9.1 - Prob. 79ECh. 9.1 - Prob. 80ECh. 9.1 - Small argument approximations Consider the...Ch. 9.1 - Small argument approximations Consider the...Ch. 9.1 - Small argument approximations Consider the...Ch. 9.1 - Prob. 84ECh. 9.1 - Prob. 85ECh. 9.1 - Prob. 86ECh. 9.1 - Prob. 87ECh. 9.1 - Prob. 88ECh. 9.1 - Prob. 89ECh. 9.1 - Prob. 90ECh. 9.1 - Best expansion point Suppose you wish to...Ch. 9.1 - Prob. 92ECh. 9.1 - Tangent line is p1 Let f be differentiable at x =...Ch. 9.1 - Local extreme points and inflection points Suppose...Ch. 9.1 - Prob. 95ECh. 9.1 - Approximating In x Let f(x) = ln x and let pn and...Ch. 9.1 - Approximating square roots Let p1 and q1 be the...Ch. 9.1 - A different kind of approximation When...Ch. 9.2 - Write the first four terms of a power series with...Ch. 9.2 - Prob. 2ECh. 9.2 - What tests are used to determine the radius of...Ch. 9.2 - Prob. 4ECh. 9.2 - Do the interval and radius of convergence of a...Ch. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Prob. 10ECh. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Prob. 26ECh. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Interval and radius of convergence Determine the...Ch. 9.2 - Combining power series Use the geometric series...Ch. 9.2 - Combining power series Use the geometric series...Ch. 9.2 - Combining power series Use the geometric series...Ch. 9.2 - Combining power series Use the geometric series...Ch. 9.2 - Combining power series Use the geometric series...Ch. 9.2 - Combining power series Use the geometric series...Ch. 9.2 - Combining power series Use the power series...Ch. 9.2 - Combining power series Use the power series...Ch. 9.2 - Prob. 37ECh. 9.2 - Combining power series Use the power series...Ch. 9.2 - Combining power series Use the power series...Ch. 9.2 - Prob. 40ECh. 9.2 - Differentiating and integrating power series Find...Ch. 9.2 - Differentiating and integrating power series Find...Ch. 9.2 - Differentiating and integrating power series Find...Ch. 9.2 - Differentiating and integrating power series Find...Ch. 9.2 - Differentiating and integrating power series Find...Ch. 9.2 - Differentiating and integrating power series Find...Ch. 9.2 - Prob. 47ECh. 9.2 - Functions to power series Find power series...Ch. 9.2 - Functions to power series Find power series...Ch. 9.2 - Functions to power series Find power series...Ch. 9.2 - Functions to power series Find power series...Ch. 9.2 - Functions to power series Find power series...Ch. 9.2 - Explain why or why not Determine whether the...Ch. 9.2 - Radius of convergence Find the radius of...Ch. 9.2 - Radius of convergence Find the radius of...Ch. 9.2 - Summation notation Write the following power...Ch. 9.2 - Summation notation Write the following power...Ch. 9.2 - Prob. 58ECh. 9.2 - Prob. 59ECh. 9.2 - Scaling power series If the power series...Ch. 9.2 - Shifting power series If the power series...Ch. 9.2 - Prob. 62ECh. 9.2 - Series to functions Find the function represented...Ch. 9.2 - Series to functions Find the function represented...Ch. 9.2 - Prob. 65ECh. 9.2 - Series to functions Find the function represented...Ch. 9.2 - Series to functions Find the function represented...Ch. 9.2 - A useful substitution Replace x with x 1 in the...Ch. 9.2 - Prob. 69ECh. 9.2 - Prob. 70ECh. 9.2 - Prob. 71ECh. 9.2 - Exponential function In Section 9.3, we show that...Ch. 9.2 - Prob. 73ECh. 9.2 - Remainders Let f(x)=k=0xk=11xandSn(x)=k=0n1xk. The...Ch. 9.2 - Prob. 75ECh. 9.2 - Inverse sine Given the power series...Ch. 9.2 - Prob. 77ECh. 9.3 - How are the Taylor polynomials for a function f...Ch. 9.3 - What conditions must be satisfied by a function f...Ch. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - For what values of p does the Taylor series for...Ch. 9.3 - In terms of the remainder, what does it mean for a...Ch. 9.3 - Prob. 8ECh. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Prob. 14ECh. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Prob. 19ECh. 9.3 - Maclaurin series a. Find the first four nonzero...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Taylor series centered at a 0 a. Find the first...Ch. 9.3 - Prob. 28ECh. 9.3 - Prob. 29ECh. 9.3 - Prob. 30ECh. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - Prob. 34ECh. 9.3 - Prob. 35ECh. 9.3 - Prob. 36ECh. 9.3 - Prob. 37ECh. 9.3 - Prob. 38ECh. 9.3 - Binomial series a. Find the first four nonzero...Ch. 9.3 - Binomial series a. Find the first four nonzero...Ch. 9.3 - Prob. 41ECh. 9.3 - Binomial series a. Find the first four nonzero...Ch. 9.3 - Binomial series a. Find the first four nonzero...Ch. 9.3 - Binomial series a. Find the first four nonzero...Ch. 9.3 - Prob. 45ECh. 9.3 - Prob. 46ECh. 9.3 - Prob. 47ECh. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Prob. 49ECh. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Working with binomial series Use properties of...Ch. 9.3 - Remainders Find the remainder in the Taylor series...Ch. 9.3 - Prob. 58ECh. 9.3 - Remainders Find the remainder in the Taylor series...Ch. 9.3 - Remainders Find the remainder in the Taylor series...Ch. 9.3 - Explain why or why not Determine whether the...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Any method a. Use any analytical method to find...Ch. 9.3 - Approximating powers Compute the coefficients for...Ch. 9.3 - Approximating powers Compute the coefficients for...Ch. 9.3 - Approximating powers Compute the coefficients for...Ch. 9.3 - Prob. 73ECh. 9.3 - Prob. 74ECh. 9.3 - Integer coefficients Show that the first five...Ch. 9.3 - Choosing a good center Suppose you want to...Ch. 9.3 - Alternative means By comparing the first four...Ch. 9.3 - Alternative means By comparing the first four...Ch. 9.3 - Prob. 79ECh. 9.3 - Prob. 80ECh. 9.3 - Prob. 81ECh. 9.3 - Composition of series Use composition of series to...Ch. 9.3 - Prob. 83ECh. 9.3 - Approximations Choose a Taylor series and center...Ch. 9.3 - Approximations Choose a Taylor series and center...Ch. 9.3 - Prob. 86ECh. 9.3 - Prob. 87ECh. 9.3 - Prob. 88ECh. 9.3 - Prob. 89ECh. 9.3 - Prob. 90ECh. 9.4 - Explain the strategy presented in this section for...Ch. 9.4 - Explain the method presented in this section for...Ch. 9.4 - How would you approximate e0.6 using the Taylor...Ch. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - What condition must be met by a function f for it...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Limits Evaluate the following limits using Taylor...Ch. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Prob. 26ECh. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Power series for derivatives a. Differentiate the...Ch. 9.4 - Differential equations a. Find a power series for...Ch. 9.4 - Differential equations a. Find a power series for...Ch. 9.4 - Differential equations a. Find a power series for...Ch. 9.4 - Differential equations a. Find a power series for...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating definite integrals Use a Taylor...Ch. 9.4 - Approximating real numbers Use an appropriate...Ch. 9.4 - Approximating real numbers Use an appropriate...Ch. 9.4 - Approximating real numbers Use an appropriate...Ch. 9.4 - Approximating real numbers Use an appropriate...Ch. 9.4 - Approximating real numbers Use an appropriate...Ch. 9.4 - Approximating real numbers Use an appropriate...Ch. 9.4 - Evaluating an infinite series Let f(x) = (ex ...Ch. 9.4 - Prob. 52ECh. 9.4 - Evaluating an infinite series Write the Taylor...Ch. 9.4 - Prob. 54ECh. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Representing functions by power series Identify...Ch. 9.4 - Explain why or why not Determine whether the...Ch. 9.4 - Limits with a parameter Use Taylor series to...Ch. 9.4 - Limits with a parameter Use Taylor series to...Ch. 9.4 - Limits with a parameter Use Taylor series to...Ch. 9.4 - A limit by Taylor series Use Taylor series to...Ch. 9.4 - Prob. 70ECh. 9.4 - Prob. 71ECh. 9.4 - Prob. 72ECh. 9.4 - Prob. 73ECh. 9.4 - Prob. 74ECh. 9.4 - Prob. 75ECh. 9.4 - Prob. 76ECh. 9.4 - Elliptic integrals The period of a pendulum is...Ch. 9.4 - Prob. 78ECh. 9.4 - Fresnel integrals The theory of optics gives rise...Ch. 9.4 - Error function An essential function in statistics...Ch. 9.4 - Prob. 81ECh. 9.4 - Prob. 82ECh. 9.4 - Prob. 83ECh. 9.4 - Prob. 84ECh. 9.4 - Prob. 85ECh. 9 - Explain why or why not Determine whether the...Ch. 9 - Prob. 2RECh. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RECh. 9 - Prob. 9RECh. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Approximations a. Find the Taylor polynomials of...Ch. 9 - Estimating remainders Find the remainder term...Ch. 9 - Estimating remainders Find the remainder term...Ch. 9 - Estimating remainders Find the remainder term...Ch. 9 - Prob. 17RECh. 9 - Prob. 18RECh. 9 - Prob. 19RECh. 9 - Prob. 20RECh. 9 - Prob. 21RECh. 9 - Prob. 22RECh. 9 - Prob. 23RECh. 9 - Prob. 24RECh. 9 - Power series from the geometric series Use the...Ch. 9 - Power series from the geometric series Use the...Ch. 9 - Power series from the geometric series Use the...Ch. 9 - Prob. 28RECh. 9 - Prob. 29RECh. 9 - Power series from the geometric series Use the...Ch. 9 - Taylor series Write out the first three nonzero...Ch. 9 - Prob. 32RECh. 9 - Taylor series Write out the first three nonzero...Ch. 9 - Taylor series Write out the first three nonzero...Ch. 9 - Taylor series Write out the first three nonzero...Ch. 9 - Taylor series Write out the first three nonzero...Ch. 9 - Prob. 37RECh. 9 - Prob. 38RECh. 9 - Prob. 39RECh. 9 - Prob. 40RECh. 9 - Binomial series Write out the first three terms of...Ch. 9 - Prob. 42RECh. 9 - Prob. 43RECh. 9 - Prob. 44RECh. 9 - Convergence Write the remainder term Rn(x) for the...Ch. 9 - Prob. 46RECh. 9 - Limits by power series Use Taylor series to...Ch. 9 - Limits by power series Use Taylor series to...Ch. 9 - Limits by power series Use Taylor series to...Ch. 9 - Limits by power series Use Taylor series to...Ch. 9 - Limits by power series Use Taylor series to...Ch. 9 - Prob. 52RECh. 9 - Definite integrals by power series Use a Taylor...Ch. 9 - Prob. 54RECh. 9 - Definite integrals by power series Use a Taylor...Ch. 9 - Prob. 56RECh. 9 - Approximating real numbers Use an appropriate...Ch. 9 - Prob. 58RECh. 9 - Approximating real numbers Use an appropriate...Ch. 9 - Prob. 60RECh. 9 - Prob. 61RECh. 9 - Prob. 62RECh. 9 - Prob. 63RECh. 9 - Graphing Taylor polynomials Consider the function...
Additional Math Textbook Solutions
Find more solutions based on key concepts
In Problems 51-66, find the domain of each function. h( x )= 3x-12
Precalculus (10th Edition)
Find the slopes of the following lines. The line going through the points (2,5)and(2,8).
Calculus & Its Applications (14th Edition)
1. On a real number line the origin is assigned the number _____ .
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
The intercepts of the equation 9 x 2 +4y=36 are ______. (pp.18-19)
Precalculus Enhanced with Graphing Utilities (7th Edition)
Percentage of change.
Glencoe Math Accelerated, Student Edition
The value of y for the provided differential equation 3y2dydx=8x using the separation of variables.
Calculus and Its Applications (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Use series to evaluate the limits in Exercisesarrow_forwardel/n + e2/n +...+ e(n–1)/n + en/n (b) Evaluate the limit lim n-00 Hint: Use the idea of Riemann sums and definite integral.arrow_forwardI for the function: f(x) = cos(7x). = COS a. Use sigma notation to write the Taylor series T(x) about xo = 14 (-1)"+172n+1 Σ fact (2n+1) 2n+1 A T(x) X - 18 n=0 b. Find interval of convergence of the series you found in Part a. Interval of convergence: (-infinity, infinity)arrow_forward
- Determine if the serie is divergent or convergent. It is convergent found the sum.arrow_forwardSeries to Bind use lim Xe² 1- Cos 2Xarrow_forwardDerivative trick Here is an alternative way to evaluate higher derivatives of a function ƒ that may save time. Suppose you can find the Taylor series for ƒ centered at the point a without evaluating derivatives (for example, from a known series). Then ƒ(k)(a) = k! multiplied by the coefficient of (x - a)k. Use this idea to evaluate ƒ(3)(0) and ƒ(4)(0) for the following functions. Use known series and do not evaluate derivatives. ƒ(x) = ecos xarrow_forward
- Identify what type of differentiation formulas are the following functions definitions and write the Taylor's series terms that you need in order to derive them. Taylor Series: +1?f"(x) 13f"(x) 1! 2! f(x+h) = f(x)+h! f'(x) 3! f(x+0.0001) - f(x – 0.0001) (a) dfdx(f,x)= Туре: 0.0002 (b) dfdx(f,x)» !(*+0.0001) – f(x) 0.0001 Туре: (c) dfdx(f,x)» f(x)–-f(x-0.0001) 0.0001 Туре:arrow_forwardThe integral tests says that if an=f(n), then the series 2 an is convergent if and only n =1 if the integral J F(x)dx is convergent as long as the function f is BLANK-1, BLANK- 2, and BLANK-3 on the interval X21. BLANK-1 Add your answer BLANK-2 Add your answer BLANK-3 Add your answer .T dx= lim x-2dx= lim -Tl+1¬1= lim +1 = 1 Since the integral converges and therefore the series 2 K=1 K? also converges, and <1+1=2. K=1 K2arrow_forward(Review) Determine whether the series E(-1)n+1 n3+5 Converges absolutely, converges conditionally, or diverges. n=1 a. converges absolutely b. converges conditionally c. diverges d. cannot be determined Let f(x) = 1 Which of the following are true? (2 marks) 1+2x² a) f(x) = E(-1)" 2"x²n if – 1< x < 1. n=0 b) f(x) = E(-1)" 2"x²n if – < x < %: n=0 c) T3,0(x) = 1 – 2x2 . d) f"(0) = -2³ · 3!. e) ſi H da 1+2x² E (-1)" 2"[2²n – 1). n=0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY