Concept explainers
Determine for the quarter ellipse of Prob. 9.67 the moments of inertia and the product of inertia with respect to new axes obtained by rotating the x and y axes about O (a) through 45° counterclockwise, (b) through 30° clockwise.
9.67 through 9.70 Determine by direct integration the product of inertia of the given area with respect to the x and y axes.
Fig. P9.67
(a)
Find the moment of inertia and product of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x and y axes about O through
Answer to Problem 9.79P
The moment of inertia for quarter ellipse with respect to new centroid axes obtained by rotating the x about O through
The moment of inertia for quarter ellipse with respect to new centroid axes obtained by rotating the y about O through
The product of inertia for quarter ellipse with respect to new centroid axes obtained by rotating the x and y about O through
Explanation of Solution
Calculation:
Sketch the quarter ellipse as shown in Figure 1.
Refer to Figure 9.12 “Moments of inertia of common geometric Shapes” in the textbook.
Find the moment of inertia
Here, a is moments and products of area for a quarter of a circle of radius.
Substitute
Find the moment of inertia
Substitute
Refer to problem 9.67.
Write the curve Equation as shown below:
Modify Equation (3).
Select a vertical strip as differential element of area.
Applying the parallel axis theorem.
Here,
Using the property of symmetry about x and y axis.
Express the variables in terms of x and y.
Find the coordinate of centroid element
Substitute
Consider the element strip as follows:
Integrating
Find the value of
Find the value of
Find the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x about O through
Refer to Equation 9.18 in section 9.3B in the textbook.
Substitute
Thus, the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x about O through
Find the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the y about O through
Refer to Equation 9.19 in section 9.3B in the textbook.
Substitute
Thus, the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the y about O through
Find the product of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x and y about O through
Substitute
Thus, the product of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x and y about O through
(b)
Find the moment of inertia and product of inertia with respect new centroid axes obtained by rotating the x and y axes about O through
Answer to Problem 9.79P
The moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x about O through
The moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the y about O through
The product of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x and y about O through
Explanation of Solution
Calculation:
Find the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x about O through
Refer to Equation 9.18 in section 9.3B in the textbook.
Substitute
Thus, the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x about O through
Find the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the y about O through
Refer to Equation 9.19 in section 9.3B in the textbook.
Substitute
Thus, the moment of inertia for quarter ellipse with respect new centroid axes obtained by rotating the y about O through
Find the product of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x and y about O through
Substitute
Thus, the product of inertia for quarter ellipse with respect new centroid axes obtained by rotating the x and y about O through
Want to see more full solutions like this?
Chapter 9 Solutions
VECTOR MECHANIC
Additional Engineering Textbook Solutions
Thermodynamics: An Engineering Approach
Starting Out With Visual Basic (8th Edition)
Mechanics of Materials (10th Edition)
SURVEY OF OPERATING SYSTEMS
Database Concepts (8th Edition)
Electric Circuits. (11th Edition)
- 1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forwardA lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forward
- Knowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forwardFind the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forward
- A six cylinder petrol engine has a compression ratio of 5:1. The clearance volume of each cylinder is 110CC. It operates on the four-stroke constant volume cycle and the indicated efficiency ratio referred to air standard efficiency is 0.56. At the speed of 2400 rpm. 44000KJ/kg. Determine the consumes 10kg of fuel per hour. The calorific value of fuel average indicated mean effective pressure.arrow_forwardThe members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forwardConsider the following acid-base reaction: Fe3+(aq) +3H2O -Fe(OH)3 (s) + 3H* ← A. Using thermodynamics, calculate the equilibrium constant K at 25°C (The AG° of formation of Fe(OH)3(s) is -699 kJ/mol). B. Using the value of K you calculated in part a, if a solution contains 10-4 M Fe3+ and has a pH of 7.5, will Fe(OH)3(s) precipitate? Show all calculations necessary to justify your answer. Note that the reaction as written is for precipitation, not dissolution like Ksp-arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY