Equilibrium solutions A differential equation of the form y′(t) = f(y) is said to be autonomous (the function f depends only on y). The constant function y = y 0 is an equilibrium solution of the equation provided f(y 0 ) = 0 (because then y′(t) = 0 and the solution remains constant for all t). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for t ≥ 0. c. Sketch the solution curve that corresponds to the initial condition y (0) = 1. 38. y ′( t ) = 2 y + 4
Equilibrium solutions A differential equation of the form y′(t) = f(y) is said to be autonomous (the function f depends only on y). The constant function y = y 0 is an equilibrium solution of the equation provided f(y 0 ) = 0 (because then y′(t) = 0 and the solution remains constant for all t). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for t ≥ 0. c. Sketch the solution curve that corresponds to the initial condition y (0) = 1. 38. y ′( t ) = 2 y + 4
Solution Summary: The author explains that the equilibrium solution of the given differential equation is y(t)=2y+4.
Equilibrium solutions A differential equation of the form y′(t) = f(y) is said to be autonomous (the function f depends only on y). The constant function y = y0 is an equilibrium solution of the equation provided f(y0) = 0 (because then y′(t) = 0 and the solution remains constant for all t). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations.
a.Find the equilibrium solutions.
b.Sketch the direction field, for t ≥ 0.
c. Sketch the solution curve that corresponds to the initial condition y (0) = 1.
38. y′(t) = 2y + 4
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Robbie
Bearing Word Problems
Angles
name:
Jocelyn
date: 1/18
8K
2. A Delta airplane and an SouthWest airplane take off from an airport
at the same time. The bearing from the airport to the Delta plane is
23° and the bearing to the SouthWest plane is 152°. Two hours later
the Delta plane is 1,103 miles from the airport and the SouthWest
plane is 1,156 miles from the airport. What is the distance between the
two planes? What is the bearing from the Delta plane to the SouthWest
plane? What is the bearing to the Delta plane from the SouthWest
plane?
Delta
y
SW
Angles
ThreeFourthsMe MATH
2
Find the derivative of the function.
m(t) = -4t (6t7 - 1)6
Find the derivative of the function.
y= (8x²-6x²+3)4
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY