Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. The
b. The differential equation y′y = 2t2 is first-order, linear, and separable.
c. The function y = t + 1/t satisfies the initial value problem ty′ + y = 2t, y(1) = 2.
d. The direction field for the differential equation y′(t) = t + y(t) is plotted in the ty-plane.
e. Euler’s method gives the exact solution to the initial value problem y′ = ty2, y(0) = 3 on the interval [0, a] provided a is not too large.
a.
Whether the given statement is true or false.
Answer to Problem 1RE
The given statement is False.
Explanation of Solution
The given statement is “The differential equation
It is known that order of a differential equation is the highest derivative present in the given differential equation.
Therefore, from the given differential equation observe that the highest order of derivative is 1.
Thus, the given differential equation is a first order differential equation.
Also, note that for a differential equation to be linear, the equation must not have products or quotients of y and its derivatives.
Thus, it can be concluded that the given differential equation is linear.
Now, check whether the given differential equation is separable or not.
From the above equation, note that the given differential equation is not separable as the variables cannot be separated further.
Therefore, the equation is in first order, linear but not separable.
Thus, the statement is false.
b.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The given statement is “The differential equation
It is known that order of a differential equation is the highest derivative present in the given differential equation.
Therefore, from the given differential equation observe that the highest order of derivative is 1.
Thus, the given differential equation is a first order differential equation.
Also, note that for a differential equation to be linear, the equation must not have products or quotients of y and its derivatives.
Thus, from the given differential equation note that the equation consists of the product of the variable y and its derivatives.
Thus, the equation is not linear.
Now, check whether the given differential equation is separable or not.
From the above equation, observe that the variables can be separated.
Therefore, the equation is in first order, separable but not linear.
Thus, the statement is False.
c.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
The given statement is “The function
Take derivative on both sides of the equation
Now, substitute the value of
Therefore, the function
Thus, the statement is true.
d.
Whether the direction field for the differential equation
Answer to Problem 1RE
The statement “The direction field for the differential equation
Explanation of Solution
The given differential equation is
Note that the notation
Also, for the differential equation at each point
It is known that a direction field is a picture that shows the slope of the solution at
Therefore the direction field for the differential equation
e.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
The given statement is “The Euler’s method gives the exact solution to the initial value problem
The given initial value problem is
It is known that the direction fields are the basis for many Computer based methods for approximating solutions of a differential equation.
Also, the exact solution of the initial value problem at grid points is
Therefore, the goal is to compute a set of approximations to the exact solution at the grid points.
Therefore, the given assumption is false.
Thus, the statement is false.
Want to see more full solutions like this?
Chapter 9 Solutions
CALCULUS:EARLY TRANSCENDENTALS-PACKAGE
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics
Basic Business Statistics, Student Value Edition
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forward
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- A: Tan Latitude / Tan P A = Tan 04° 30'/ Tan 77° 50.3' A= 0.016960 803 S CA named opposite to latitude, except when hour angle between 090° and 270°) B: Tan Declination | Sin P B Tan 052° 42.1'/ Sin 77° 50.3' B = 1.34 2905601 SCB is alway named same as declination) C = A + B = 1.35 9866404 S CC correction, A+/- B: if A and B have same name - add, If different name- subtract) = Tan Azimuth 1/Ccx cos Latitude) Tan Azimuth = 0.737640253 Azimuth = S 36.4° E CAzimuth takes combined name of C correction and Hour Angle - If LHA is between 0° and 180°, it is named "west", if LHA is between 180° and 360° it is named "east" True Azimuth= 143.6° Compass Azimuth = 145.0° Compass Error = 1.4° West Variation 4.0 East Deviation: 5.4 Westarrow_forwardds 5. Find a solution to this initial value problem: 3t2, s(0) = 5. dt 6. Find a solution to this initial value problem: A' = 0.03A, A(0) = 100.arrow_forward2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The system contains both external and internal damping. Show that the system loses the reciprocity property.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning