EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.12, Problem 10P
To determine
What does the following terms define relating to reciprocating engines: top dead center, stroke, clearance volume and bore?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Essay
Topic: Define the following terms related to reciprocating engines: cycle, stroke, bore, clearance volume, volume displacement, clearance percentage, compression ratio, cut-off ratio, pressure ratio, and thermal efficiency.
The Fifth Question:
A six-cylinder, 4-stroke petrol engine develops 62 H.P at 3000 r.p.m. The volumetric
efficiency at N.T.P. is 85%. The bore is equal to the stroke and thermal efficiency of 25 %
may be assumed. Calorific value of petrol is 44100 kj/kg. Air-fuel ratio is to be 15:1.
Calculate the cylinder bore and stroke.
last digit 5
The Snecma M88 is a French afterburning turbofan engine developed by Snecma (now
known as Safran Aircraft Engines) for the Dassault Rafale fighter. The following are some
preliminary design data at takeoff conditions.
The engine pressure ratio 24.5, bypass ratio 0.3 and total air mass flow rate 60+last digit kg/s.
Inlet diffuser: stagnation pressure ratio 0.98.
Fan: pressure ratio 1.3, isentropic efficiency 0.89, first-stage hubtip diameters 0.22/0.66 m,
0.96.
1. The air inlet velocity to the fan is 150 m/s entering axially and the LP-spool rotating speed
is 5000 rpm. Draw the velocity triangle and blade shapes. Calculate maximum inlet
relative Mach number. Check if there is any shock formation.
Chapter 9 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 9.12 - What are the air-standard assumptions?Ch. 9.12 - What is the difference between air-standard...Ch. 9.12 - How does the thermal efficiency of an ideal cycle,...Ch. 9.12 - What does the area enclosed by the cycle represent...Ch. 9.12 - Prob. 5PCh. 9.12 - Prob. 6PCh. 9.12 - Can the mean effective pressure of an automobile...Ch. 9.12 - Prob. 8PCh. 9.12 - What is the difference between spark-ignition and...Ch. 9.12 - Prob. 10P
Ch. 9.12 - Prob. 11PCh. 9.12 - Prob. 12PCh. 9.12 - Prob. 13PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Prob. 21PCh. 9.12 - Prob. 22PCh. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Prob. 27PCh. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Prob. 32PCh. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 35PCh. 9.12 - Prob. 36PCh. 9.12 - Prob. 37PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Prob. 40PCh. 9.12 - Prob. 41PCh. 9.12 - Prob. 42PCh. 9.12 - Prob. 43PCh. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 57PCh. 9.12 - Prob. 58PCh. 9.12 - Prob. 59PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 63PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 71PCh. 9.12 - Prob. 72PCh. 9.12 - Prob. 73PCh. 9.12 - Prob. 74PCh. 9.12 - Prob. 75PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 82PCh. 9.12 - Prob. 83PCh. 9.12 - Prob. 85PCh. 9.12 - 9–86 Consider a simple Brayton cycle using air as...Ch. 9.12 - 9–87 Air is used as the working fluid in a simple...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - 9–91E A gas-turbine power plant operates on a...Ch. 9.12 - Prob. 92PCh. 9.12 - 9–93 A gas-turbine power plant operates on the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - Prob. 95PCh. 9.12 - Prob. 96PCh. 9.12 - Prob. 97PCh. 9.12 - Prob. 98PCh. 9.12 - 9–99 A gas turbine for an automobile is designed...Ch. 9.12 - Prob. 100PCh. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - Prob. 106PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 108PCh. 9.12 - Prob. 109PCh. 9.12 - Prob. 110PCh. 9.12 - Prob. 111PCh. 9.12 - Prob. 112PCh. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Prob. 118PCh. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - Prob. 123PCh. 9.12 - Prob. 124PCh. 9.12 - Prob. 126PCh. 9.12 - Prob. 127PCh. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - Prob. 131PCh. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 134PCh. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - 9–137 Air at 7°C enters a turbojet engine at a...Ch. 9.12 - Prob. 138PCh. 9.12 - Prob. 139PCh. 9.12 - 9–140E Determine the exergy destruction associated...Ch. 9.12 - Prob. 141PCh. 9.12 - Prob. 142PCh. 9.12 - Prob. 143PCh. 9.12 - Prob. 144PCh. 9.12 - Prob. 146PCh. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 149PCh. 9.12 - Prob. 150RPCh. 9.12 - Prob. 151RPCh. 9.12 - Prob. 152RPCh. 9.12 - Prob. 153RPCh. 9.12 - Prob. 154RPCh. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 161RPCh. 9.12 - Prob. 162RPCh. 9.12 - Prob. 163RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 165RPCh. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 169RPCh. 9.12 - Prob. 170RPCh. 9.12 - Prob. 173RPCh. 9.12 - Prob. 174RPCh. 9.12 - Prob. 184FEPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - Prob. 186FEPCh. 9.12 - Prob. 187FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 189FEPCh. 9.12 - Prob. 190FEPCh. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...Ch. 9.12 - Prob. 198FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- b) A single-acting, two-stage reciprocating air compressor runs at a speed of 500 rev/min with overall pressure ratio of 20 to 1 has free air delivery of 5.0 m3/min. For the first stage compressor, the pressure and temperature at the end of induction stroke is 100kPa and 27°C, respectively. The intermediate pressure is 500 kPa, and the intercooling process is complete. The clearance volumes of both stages are 5% of their respective swept volumes. The ambient pressure and temperature are at 100 kPa and 27°C, respectively. The index of compression and expansion, n is 1.3. i) Sketch the cycle on a P-V diagram. ii) Determine final delivery temperature of the compressor, C. iii) Determine totalindicated power, kw. iv) Determine volumetric efficiency for the first stage, %. v) Calculate the swept volume of the first and second stage, m2. Take the value of R for air is 0.287 kl/kg.K.arrow_forwardNonearrow_forward2.) A four-cylinder, two-stroke cycle diesel engine with 10.9 cm bore and 12.6 cm stroke produces 88 kW of brake power at 2000 RPM. Compression ratio rc = %3D 18:1. (a) engine displacement in cm³, (b) brake mean effective pressure in kPa, (c) torque in N-m, (d) clearance volume of one cylinder in cm³.arrow_forward
- 3. Define any four performance parameters of a gas turbine engine with the help of well-defined equations.arrow_forwardGas turbine may be modified to be used for propulsion usage as for turbo jet-engine and prop-engine, provide a simple sketch and described the principles of operation of ideal jet-propulsion cycle where you may mention other modifications or jet engine versions.arrow_forward(6) A small single-cylinder, two-stroke cycle SI engine operates at 8000 r.p.m. with a volumetric efficiency of (0.85). the engine is square (bore-stroke) and has a displacement 3 of 6.28 cm the fuel-air ratio FA=0.067 . calculate :- m (a) Average piston speed. sec (b) Flow rate of air into engine. kg sec (c) Flow rate of fuel into engine. (kg sec (d) Fuel input for one cycle. kg cycle (d) 4.22×10-7 ANS: (a) 5.33, (b) 0.00084, (c) 5.63×107arrow_forward
- 14. Horsepower produced if engine is 4 stroke type and has 2 cylinders 15. Mean Effective PRessurearrow_forwardCalculate the air standard efficiency of a four stroke Otto cycle engine with the following data:Piston diameter (bore) = 137 mm; Length of stroke = 130 mm ; Clearance volume 0.00028 m3.Cp=1.004 kJ/kgK and Cv= 0.717 kJ/kgKarrow_forwardYou have been asked to help with the low-pressure compressor (LPC) design for a turbofan engine with a bypass ratio of 8.4. The preliminary cycle design calls for the LPC to produce a pressure ratio of 9.4 with the following operating conditions and constraints. .Inlet Conditions TO2 Poz Core Air Mass Flowrate (kg/s) (K) (kPa) 282 24.6 47.0 Design Constraints Maximum Polytropic Efficiency 94.1% Maximum Stage Pr 1.55 Estimate the minimum number of stages required for this LPC. Then assuming the 1st stage of the LPC operates at the maximum allowable pressure ratio, determine the stagnation temperature exiting the 1st stage, and the stage's adiabatic efficiency. Also determine the power (W) required to operate the full LPC (not just 1st stage). Finally, what would be the percent change in the required power if the polytropic efficiency was only 90.0%.arrow_forward
- The following data is given for a four-stroke diesel engine: Cylinder bore = 250 mm, Length of stroke = 300 mm, Speed 600 rpm, Indicated mean effective pressure = 0.6 Mpa, Mechanical efficiency = 80% Maximum gas pressure = 4 Mpa, Fuel consumption = 0.25 kg per BP per h Higher calorific value of fuel = 44 000 kJ/kg, Assume that 5% of the total heat developed in the cylinder is transmitted by the piston. The piston is made grey cast iron FG 200 (Sut = 200 N/mm² and k = 46.6 W/m/°C) and the factor of safety is 5. The temperature difference between the centre and the edge of the piston head is 220°C. (i) Calculate the thickness of piston head by strength consideration. (ii) Calculate the thickness of piston head by thermal consideration. (iii) Which criterion decides the thickness of piston head? (iv) State whether the ribs are required. (v) If so, calculate the number and thickness of piston ribs. (vi) State whether a cup is required in the top of the piston head. (vii) If so, calculate…arrow_forwardAnswer both parts correctly and neatly for an upvote. Thanksarrow_forwardThe swept volume of an engine working on the dual combustion cycle is 0.1068m³. The clearance volume is 8% of the swept volume. At the beginning of compression the air conditions are 100kPa and 42°C The maximum cycle conditions are 4500kPa and 1500°C. Calculate: (a). thermal efficiency (b). mean effective pressure (c). exhaust pressure (d). air-fuel ratio if the calorific value of the fuel is 43MJ/kg Assume the compression and expansion to be adiabatic. Use the standard constants for air.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY