(a)
To express: The velocity of the wind as a
(a)
Answer to Problem 59E
The expression of wind velocity in component form is
Explanation of Solution
Given:
The speed of wind is
Formula used:
If velocity of wind is vector v which makes angle
Calculation:
The speed of wind is
The angle made by wind velocity with positive
Wind velocity vector v is shown on coordinate axis in Figure (1).
Figure (1)
Substitute
Thus, the component form of wind velocity v is
(b)
To express: The velocity of the jet relative to air in component form.
(b)
Answer to Problem 59E
Expression of jet velocity in component form relative to air is
Explanation of Solution
Given:
The speed of Jet is
Formula used:
If velocity of Jet is vector u which makes angle
Calculation:
The speed of Jet is
So, the angle made by Jet velocity vector with positive
Jet velocity vector is shown in Figure (2).
Figure (2)
Substitute
Thus, component form of Jet velocity u is
(c)
To find: The true velocity of Jet as a vector.
(c)
Answer to Problem 59E
True velocity of jet as a vector is
Explanation of Solution
Given:
The speed of wind is
The speed of Jet is
Formula used:
If vector u is
Calculation:
If true velocity of jet is vector p , then vector p will be the resultant sum of wind velocity v and jet velocity u.
Figure (3) shows the vector u, vector v and vector p on coordinate axis.
Figure (3)
From section (b) jet velocity u is
Substitute
And vector p is
Therefore,
Thus true velocity of jet is
(d)
To find: True speed and direction of Jet.
(d)
Answer to Problem 59E
True speed of jet is
Explanation of Solution
Given:
The speed of Jet relative to air is
Formula used:
If
Where,
Calculation:
From Section (c), the true velocity of jet is
Substitute
Therefore true speed of jet is
If
From section (c), true velocity vector of jet is
Thus,
Solve for
So, direction is
Therefore, the true speed of jet is
Chapter 9 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- 53,85÷1,5=arrow_forward3. In the space below, describe in what ways the function f(x) = -2√x - 3 has been transformed from the basic function √x. The graph f(x) on the coordinate plane at right. (4 points) -4 -&- -3 -- -2 4 3- 2 1- 1 0 1 2 -N -1- -2- -3- -4- 3 ++ 4arrow_forward2. Suppose the graph below left is the function f(x). In the space below, describe what transformations are occuring in the transformed function 3ƒ(-2x) + 1. The graph it on the coordinate plane below right. (4 points)arrow_forward
- 1 1. Suppose we have the function f(x) = = and then we transform it by moving it four units to the right and six units down, reflecting it horizontally, and stretching vertically by 5 units. What will the formula of our new function g(x) be? (2 points) g(x) =arrow_forwardSuppose an oil spill covers a circular area and the radius, r, increases according to the graph shown below where t represents the number of minutes since the spill was first observed. Radius (feet) 80 70 60 50 40 30 20 10 0 r 0 10 20 30 40 50 60 70 80 90 Time (minutes) (a) How large is the circular area of the spill 30 minutes after it was first observed? Give your answer in terms of π. square feet (b) If the cost to clean the oil spill is proportional to the square of the diameter of the spill, express the cost, C, as a function of the radius of the spill, r. Use a lower case k as the proportionality constant. C(r) = (c) Which of the following expressions could be used to represent the amount of time it took for the radius of the spill to increase from 20 feet to 60 feet? r(60) - r(20) Or¹(80-30) r(80) - r(30) r-1(80) - r−1(30) r-1(60) - r¹(20)arrow_forward6. Graph the function f(x)=log3x. Label three points on the graph (one should be the intercept) with corresponding ordered pairs and label the asymptote with its equation. Write the domain and range of the function in interval notation. Make your graph big enough to see all important features.arrow_forward
- Find the average value gave of the function g on the given interval. gave = g(x) = 8√√x, [8,64] Need Help? Read It Watch Itarrow_forward3. Mary needs to choose between two investments: One pays 5% compounded annually, and the other pays 4.9% compounded monthly. If she plans to invest $22,000 for 3 years, which investment should she choose? How much extra interest will she earn by making the better choice? For all word problems, your solution must be presented in a sentence in the context of the problem.arrow_forward4 πT14 Sin (X) 3 Sin(2x) e dx 1716 S (sinx + cosx) dxarrow_forward
- Let g(x) = f(t) dt, where f is the function whose graph is shown. 3 y f(t) MA t (a) At what values of x do the local maximum and minimum values of g occur? Xmin = Xmin = Xmax = Xmax = (smaller x-value) (larger x-value) (smaller x-value) (larger x-value) (b) Where does g attain its absolute maximum value? x = (c) On what interval is g concave downward? (Enter your answer using interval notation.)arrow_forward2. Graph the function f(x)=e* −1. Label three points on the graph (one should be the intercept) with corresponding ordered pairs (round to one decimal place) and label the asymptote with its equation. Write the domain and range of the function in interval notation. Make your graph big enough to see all important features. You may show the final graph only.arrow_forwardansewer both questions in a very detailed manner . thanks!arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning