Algebra and Trigonometry (MindTap Course List)
4th Edition
ISBN: 9781305071742
Author: James Stewart, Lothar Redlin, Saleem Watson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.1, Problem 46E
To determine
To find:
The horizontal and the vertical component of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. (a) A vector in the plane is a line segment with an assigned
direction. In Figure I below, the vector u has initial point
. and terminal point .
vectors 2u and u + v.
Sketch the
(b) A vector in a coordinate plane is expressed by using
components. In Figure II below, the vector u has initial
point (,D and terminal point (.). In compo-
nent form we write u = (.), and v =
Then 2u = (. ) and u + v = (
D
B
u
I
II
Vector A is 3 units long at 25° and vector B is 3.5 units long at 105°. Draw the two vectors in a coordinate system schematically. Draw the sum of the two vectors in the same diagram. Calculate the x and y components of each vector. Calculate the x and y components of the vector C=A+B using the component method. .......................At time t=0 s, a stone is thrown from the top of a building horizontally with initial velocity 24 m/s. The building is so tall that the stone is still in the air at t=1.5 s. Calculate The horizontal displacement of the stone at 1=1.5 s. The vertical displacement of the stone at t=1.5 s
2. Vector Addition and Vector Components: Vector A is 2.80 cm long and is 60° above the x-axis in the
first quadrant. Vector B is 1.90 cm long and is 60° below the x-axis in the fourth quadrant. Use components
to find the magnitude and direction of (a) Ā + B; (b) Ā -B (c) B+ A. In each case, (d) sketch the vector
addition or subtraction and show that your numerical answers are in qualitative agreement with your
sketch.
Chapter 9 Solutions
Algebra and Trigonometry (MindTap Course List)
Ch. 9.1 - Prob. 1ECh. 9.1 - CONCEPTS 2. a The length of a vector w=a1,a2 is...Ch. 9.1 - 38 Sketching Vectors Sketch the vector indicated....Ch. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - SKILLS 3-8 Sketching Vectors Sketch the vector...Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - Prob. 10E
Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - 19-22Sketching VectorsSketch the given vector with...Ch. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - 27-30Writing Vectors in terms of i and jWrite the...Ch. 9.1 - Prob. 29ECh. 9.1 - Prob. 30ECh. 9.1 - Prob. 31ECh. 9.1 - 31-36 Operations with vectors Find 2u, 3v, u+v,...Ch. 9.1 - Prob. 33ECh. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Prob. 42ECh. 9.1 - Prob. 43ECh. 9.1 - Prob. 44ECh. 9.1 - Prob. 45ECh. 9.1 - Prob. 46ECh. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.1 - Prob. 51ECh. 9.1 - Prob. 52ECh. 9.1 - Prob. 53ECh. 9.1 - Components of a VelocityA jet is flying in a...Ch. 9.1 - Prob. 55ECh. 9.1 - VelocitySuppose that in Exercise 55 the current is...Ch. 9.1 - VelocityThe speed of an airplane is 300 mi/h...Ch. 9.1 - Prob. 58ECh. 9.1 - Prob. 59ECh. 9.1 - Prob. 60ECh. 9.1 - True Velocity of a JetFind the true speed and...Ch. 9.1 - Prob. 62ECh. 9.1 - Prob. 63ECh. 9.1 - Velocity of a Boat The boater in Exercise 63 wants...Ch. 9.1 - Prob. 65ECh. 9.1 - Prob. 66ECh. 9.1 - Prob. 67ECh. 9.1 - Prob. 68ECh. 9.1 - Prob. 69ECh. 9.1 - Prob. 70ECh. 9.1 - Prob. 71ECh. 9.1 - Prob. 72ECh. 9.1 - Prob. 73ECh. 9.1 - Equilibrium of Tensions The cranes in the figure...Ch. 9.1 - Prob. 75ECh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - SKILLS 29-34Vector Projection of uonto va...Ch. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - Prob. 49ECh. 9.2 - Prob. 50ECh. 9.2 - Prob. 51ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.4 - A vector in three dimensions can be written in...Ch. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - Prob. 6ECh. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - Prob. 19ECh. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - Prob. 23ECh. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.4 - Prob. 27ECh. 9.4 - Prob. 28ECh. 9.4 - Prob. 29ECh. 9.4 - Prob. 30ECh. 9.4 - Prob. 31ECh. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.4 - Prob. 36ECh. 9.4 - Prob. 37ECh. 9.4 - Prob. 38ECh. 9.4 - Prob. 39ECh. 9.4 - Prob. 40ECh. 9.4 - Prob. 41ECh. 9.4 - Prob. 42ECh. 9.4 - Prob. 43ECh. 9.4 - Prob. 44ECh. 9.4 - Prob. 45ECh. 9.4 - Prob. 46ECh. 9.4 - Prob. 47ECh. 9.4 - Prob. 48ECh. 9.4 - Prob. 49ECh. 9.4 - Central Angle of a Tetrahedron A tetrahedron is a...Ch. 9.4 - Prob. 51ECh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - Prob. 21ECh. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - Prob. 25ECh. 9.5 - Prob. 26ECh. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - Prob. 30ECh. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 37ECh. 9.6 - Prob. 1ECh. 9.6 - Prob. 2ECh. 9.6 - Prob. 3ECh. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Prob. 8ECh. 9.6 - Prob. 9ECh. 9.6 - Prob. 10ECh. 9.6 - Prob. 11ECh. 9.6 - Prob. 12ECh. 9.6 - Prob. 13ECh. 9.6 - Prob. 14ECh. 9.6 - Prob. 15ECh. 9.6 - Prob. 16ECh. 9.6 - Prob. 17ECh. 9.6 - Prob. 18ECh. 9.6 - Prob. 19ECh. 9.6 - Prob. 20ECh. 9.6 - Prob. 21ECh. 9.6 - Prob. 22ECh. 9.6 - Prob. 23ECh. 9.6 - Prob. 24ECh. 9.6 - Prob. 25ECh. 9.6 - Prob. 26ECh. 9.6 - Prob. 27ECh. 9.6 - Prob. 28ECh. 9.6 - Prob. 29ECh. 9.6 - Prob. 30ECh. 9.6 - Prob. 31ECh. 9.6 - Prob. 32ECh. 9.6 - Prob. 33ECh. 9.6 - Prob. 34ECh. 9.6 - Prob. 35ECh. 9.6 - Prob. 36ECh. 9.6 - Prob. 37ECh. 9.CR - aWhat is a vector in the plane? How do we...Ch. 9.CR - Prob. 2CCCh. 9.CR - Prob. 3CCCh. 9.CR - Prob. 4CCCh. 9.CR - Prob. 5CCCh. 9.CR - Prob. 6CCCh. 9.CR - Prob. 7CCCh. 9.CR - Prob. 8CCCh. 9.CR - Prob. 9CCCh. 9.CR - Prob. 10CCCh. 9.CR - Prob. 1ECh. 9.CR - Prob. 2ECh. 9.CR - Prob. 3ECh. 9.CR - Prob. 4ECh. 9.CR - Prob. 5ECh. 9.CR - Prob. 6ECh. 9.CR - Prob. 7ECh. 9.CR - Prob. 8ECh. 9.CR - Prob. 9ECh. 9.CR - Prob. 10ECh. 9.CR - Prob. 11ECh. 9.CR - True Velocity of a PlaneAn airplane heads N60E at...Ch. 9.CR - Prob. 13ECh. 9.CR - Prob. 14ECh. 9.CR - Prob. 15ECh. 9.CR - Prob. 16ECh. 9.CR - Prob. 17ECh. 9.CR - Prob. 18ECh. 9.CR - Prob. 19ECh. 9.CR - Prob. 20ECh. 9.CR - Prob. 21ECh. 9.CR - Prob. 22ECh. 9.CR - Prob. 23ECh. 9.CR - Prob. 24ECh. 9.CR - Prob. 25ECh. 9.CR - Prob. 26ECh. 9.CR - Prob. 27ECh. 9.CR - Prob. 28ECh. 9.CR - Prob. 29ECh. 9.CR - Prob. 30ECh. 9.CR - Prob. 31ECh. 9.CR - Prob. 32ECh. 9.CR - Prob. 33ECh. 9.CR - Prob. 34ECh. 9.CR - Prob. 35ECh. 9.CR - Prob. 36ECh. 9.CR - Prob. 37ECh. 9.CR - Prob. 38ECh. 9.CR - Prob. 39ECh. 9.CR - Prob. 40ECh. 9.CR - Prob. 41ECh. 9.CR - Prob. 42ECh. 9.CR - Prob. 43ECh. 9.CR - Prob. 44ECh. 9.CR - Prob. 45ECh. 9.CR - Prob. 46ECh. 9.CR - Prob. 47ECh. 9.CR - Prob. 48ECh. 9.CR - Prob. 49ECh. 9.CR - Prob. 50ECh. 9.CR - Prob. 51ECh. 9.CR - Prob. 52ECh. 9.CR - Prob. 53ECh. 9.CR - Prob. 54ECh. 9.CT - TEST Let u be the vector with the initial point...Ch. 9.CT - TEST Let u=1,3 and v=6,2. a Find u3v. b Find...Ch. 9.CT - Prob. 3CTCh. 9.CT - Prob. 4CTCh. 9.CT - Prob. 5CTCh. 9.CT - Prob. 6CTCh. 9.CT - Prob. 7CTCh. 9.CT - Prob. 8CTCh. 9.CT - Prob. 9CTCh. 9.CT - Prob. 10CTCh. 9.CT - Prob. 11CTCh. 9.FOM - Prob. 1PCh. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - Prob. 5PCh. 9.FOM - Prob. 6PCh. 9.FOM - Prob. 7PCh. 9.FOM - Prob. 8PCh. 9.FOM - Prob. 9PCh. 9.FOM - Prob. 10PCh. 9.FOM - Prob. 11PCh. 9.FOM - Prob. 12PCh. 9.FOM - Prob. 13PCh. 9.FOM - Prob. 14PCh. 9.FOM - Prob. 15PCh. 9.FOM - Prob. 16PCh. 9.FOM - Prob. 17PCh. 9.FOM - Prob. 18PCh. 9.FOM - Prob. 19P
Knowledge Booster
Similar questions
- Find the magnitude and direction angle for each vector. • 431-46j (5.-6) Find the unit vector. Complete all. • u= -10₂ -1 Unit vector in the same direction of u u = -12, -3 Unit vector in the same direction of u 6) RS where R=(3,-1) S =arrow_forwardStarting from home at the origin O. a rhino travels for 9.1 km in the direction 60° North of East to a point A. From point A she travels due North for 11 km to a point B. (a) Suppose the vectors OA and AB represent each part of the rhino's travels. Write the components of each vector. Report any approximate values to 2 decimal places. OA= Number 14 Number AB= Number Number (b) Report the vector OB-OA+ AB in component form Report any approximate values to 2 decimal places. OB- Number 7+ Number 3 (c) Report how far apart she is from home, i.e., how far are the points O and B? km (Round to 2 decimal places.) OB Number 0 (d) From point B she decides to return back to the point O. In what direction south of west must she travel in order to get back to the point ? (Report in degrees, rounded to 2 decimal places.) 8 Numberarrow_forwardA. Three-Vector Set: V, - 10.0 m at 90- • V₁ = 15.0 m at 30° South West • V. 15.0 m at 0 Draw these vectors to scale (identify the scale you used), draw the resultant, and measure its magnitude and direction. Write the direction in the chart as a positive angle measured counterclockwise from the +x-axis. GRAPHICAL METHOD Magnitude (units) Direction () Resultant COMPONENT METHOD X component (units) Y component (units) V₁-10.0 m at 90- 0 10 V.-15.0 m at 30 South West -7.5 -6.10 V.-15.0 m at 0 15 0 Resultant components 7.5 3.9 COMPONENT METHOD Magnitude (units) 8.45 Direction () 27.47 Resultant magnitude & direction ALL FINAL ANGLES IN THIS LAB SHOULD BE EXPRESSED AS A POSITIVE ANGLE MEASURED COUNTERCLOCKWISE FROM 0 (the +x-axis)arrow_forward
- the question is in the imagearrow_forward1. Find the unit vector in the same direction of V=. Graph the corresponding vector in a rectangular coordinate system. 2. Given: A = 3î -5ĵ and B= 2î + 6ĵ. Evaluate W = 4A- 3B 3. Write vector V as a linear combination of the unit vectors î and ĵ given that vector has a magnitude of 16 and an angle of 30 degrees with the positive axis.arrow_forwardThree vectors a, b, and, each have a magnitude of 42.0 m and lie in an xy plane. Their directions relative to the positive direction of the x axis are 26.0°, 195°, and 313 °, respectively. What are (a) the magnitude and (b) the angle of the vector a + b + 7 (relative to the +x direction in the range of (-180°, 180°)), and (c) the magnitude and (d) the angle of à - b + in the range of (-180°, 180°)? What are (e) the magnitude and (f) the angle (in the range of (-180°, 180°)) of a fourth vector a such that (a + b) - (7 + d) = (a) Number i (b) Number i (c) Number i (d) Number i (e) Number i (f) Number i Unit Unit Unit Unit Unit Unit >arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning