Algebra and Trigonometry (MindTap Course List)
4th Edition
ISBN: 9781305071742
Author: James Stewart, Lothar Redlin, Saleem Watson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.6, Problem 8E
To determine
To find:
The parametric equations for the line that passes through the point
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Linear Algebra
Find the symmetric and parametric equations of the line that passes through points A(0, 1, 2) and B(1, 2, 1).
Lines in 2d. Thank you!
Practia go4
(a) Determine the vector and parametric equations of the line (L1) passing through points
A = (-3, 2,8) and B = (4, 3, 9).
(b) Determine if the lines L1 (from part (a)) and L2: [x, y, 2] = [1,0, – 1]+s[14,2, 2] intersect.
Why or why not?
(c) Is the point (4, 3, 3) on the line L1? Why or why not?
Chapter 9 Solutions
Algebra and Trigonometry (MindTap Course List)
Ch. 9.1 - Prob. 1ECh. 9.1 - CONCEPTS 2. a The length of a vector w=a1,a2 is...Ch. 9.1 - 38 Sketching Vectors Sketch the vector indicated....Ch. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - SKILLS 3-8 Sketching Vectors Sketch the vector...Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - Prob. 10E
Ch. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - 19-22Sketching VectorsSketch the given vector with...Ch. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - 27-30Writing Vectors in terms of i and jWrite the...Ch. 9.1 - Prob. 29ECh. 9.1 - Prob. 30ECh. 9.1 - Prob. 31ECh. 9.1 - 31-36 Operations with vectors Find 2u, 3v, u+v,...Ch. 9.1 - Prob. 33ECh. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Prob. 42ECh. 9.1 - Prob. 43ECh. 9.1 - Prob. 44ECh. 9.1 - Prob. 45ECh. 9.1 - Prob. 46ECh. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.1 - Prob. 51ECh. 9.1 - Prob. 52ECh. 9.1 - Prob. 53ECh. 9.1 - Components of a VelocityA jet is flying in a...Ch. 9.1 - Prob. 55ECh. 9.1 - VelocitySuppose that in Exercise 55 the current is...Ch. 9.1 - VelocityThe speed of an airplane is 300 mi/h...Ch. 9.1 - Prob. 58ECh. 9.1 - Prob. 59ECh. 9.1 - Prob. 60ECh. 9.1 - True Velocity of a JetFind the true speed and...Ch. 9.1 - Prob. 62ECh. 9.1 - Prob. 63ECh. 9.1 - Velocity of a Boat The boater in Exercise 63 wants...Ch. 9.1 - Prob. 65ECh. 9.1 - Prob. 66ECh. 9.1 - Prob. 67ECh. 9.1 - Prob. 68ECh. 9.1 - Prob. 69ECh. 9.1 - Prob. 70ECh. 9.1 - Prob. 71ECh. 9.1 - Prob. 72ECh. 9.1 - Prob. 73ECh. 9.1 - Equilibrium of Tensions The cranes in the figure...Ch. 9.1 - Prob. 75ECh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - SKILLS 29-34Vector Projection of uonto va...Ch. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - Prob. 49ECh. 9.2 - Prob. 50ECh. 9.2 - Prob. 51ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.4 - A vector in three dimensions can be written in...Ch. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - Prob. 6ECh. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - Prob. 19ECh. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - Prob. 23ECh. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.4 - Prob. 27ECh. 9.4 - Prob. 28ECh. 9.4 - Prob. 29ECh. 9.4 - Prob. 30ECh. 9.4 - Prob. 31ECh. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.4 - Prob. 36ECh. 9.4 - Prob. 37ECh. 9.4 - Prob. 38ECh. 9.4 - Prob. 39ECh. 9.4 - Prob. 40ECh. 9.4 - Prob. 41ECh. 9.4 - Prob. 42ECh. 9.4 - Prob. 43ECh. 9.4 - Prob. 44ECh. 9.4 - Prob. 45ECh. 9.4 - Prob. 46ECh. 9.4 - Prob. 47ECh. 9.4 - Prob. 48ECh. 9.4 - Prob. 49ECh. 9.4 - Central Angle of a Tetrahedron A tetrahedron is a...Ch. 9.4 - Prob. 51ECh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - Prob. 21ECh. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - Prob. 25ECh. 9.5 - Prob. 26ECh. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - Prob. 30ECh. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 37ECh. 9.6 - Prob. 1ECh. 9.6 - Prob. 2ECh. 9.6 - Prob. 3ECh. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Prob. 8ECh. 9.6 - Prob. 9ECh. 9.6 - Prob. 10ECh. 9.6 - Prob. 11ECh. 9.6 - Prob. 12ECh. 9.6 - Prob. 13ECh. 9.6 - Prob. 14ECh. 9.6 - Prob. 15ECh. 9.6 - Prob. 16ECh. 9.6 - Prob. 17ECh. 9.6 - Prob. 18ECh. 9.6 - Prob. 19ECh. 9.6 - Prob. 20ECh. 9.6 - Prob. 21ECh. 9.6 - Prob. 22ECh. 9.6 - Prob. 23ECh. 9.6 - Prob. 24ECh. 9.6 - Prob. 25ECh. 9.6 - Prob. 26ECh. 9.6 - Prob. 27ECh. 9.6 - Prob. 28ECh. 9.6 - Prob. 29ECh. 9.6 - Prob. 30ECh. 9.6 - Prob. 31ECh. 9.6 - Prob. 32ECh. 9.6 - Prob. 33ECh. 9.6 - Prob. 34ECh. 9.6 - Prob. 35ECh. 9.6 - Prob. 36ECh. 9.6 - Prob. 37ECh. 9.CR - aWhat is a vector in the plane? How do we...Ch. 9.CR - Prob. 2CCCh. 9.CR - Prob. 3CCCh. 9.CR - Prob. 4CCCh. 9.CR - Prob. 5CCCh. 9.CR - Prob. 6CCCh. 9.CR - Prob. 7CCCh. 9.CR - Prob. 8CCCh. 9.CR - Prob. 9CCCh. 9.CR - Prob. 10CCCh. 9.CR - Prob. 1ECh. 9.CR - Prob. 2ECh. 9.CR - Prob. 3ECh. 9.CR - Prob. 4ECh. 9.CR - Prob. 5ECh. 9.CR - Prob. 6ECh. 9.CR - Prob. 7ECh. 9.CR - Prob. 8ECh. 9.CR - Prob. 9ECh. 9.CR - Prob. 10ECh. 9.CR - Prob. 11ECh. 9.CR - True Velocity of a PlaneAn airplane heads N60E at...Ch. 9.CR - Prob. 13ECh. 9.CR - Prob. 14ECh. 9.CR - Prob. 15ECh. 9.CR - Prob. 16ECh. 9.CR - Prob. 17ECh. 9.CR - Prob. 18ECh. 9.CR - Prob. 19ECh. 9.CR - Prob. 20ECh. 9.CR - Prob. 21ECh. 9.CR - Prob. 22ECh. 9.CR - Prob. 23ECh. 9.CR - Prob. 24ECh. 9.CR - Prob. 25ECh. 9.CR - Prob. 26ECh. 9.CR - Prob. 27ECh. 9.CR - Prob. 28ECh. 9.CR - Prob. 29ECh. 9.CR - Prob. 30ECh. 9.CR - Prob. 31ECh. 9.CR - Prob. 32ECh. 9.CR - Prob. 33ECh. 9.CR - Prob. 34ECh. 9.CR - Prob. 35ECh. 9.CR - Prob. 36ECh. 9.CR - Prob. 37ECh. 9.CR - Prob. 38ECh. 9.CR - Prob. 39ECh. 9.CR - Prob. 40ECh. 9.CR - Prob. 41ECh. 9.CR - Prob. 42ECh. 9.CR - Prob. 43ECh. 9.CR - Prob. 44ECh. 9.CR - Prob. 45ECh. 9.CR - Prob. 46ECh. 9.CR - Prob. 47ECh. 9.CR - Prob. 48ECh. 9.CR - Prob. 49ECh. 9.CR - Prob. 50ECh. 9.CR - Prob. 51ECh. 9.CR - Prob. 52ECh. 9.CR - Prob. 53ECh. 9.CR - Prob. 54ECh. 9.CT - TEST Let u be the vector with the initial point...Ch. 9.CT - TEST Let u=1,3 and v=6,2. a Find u3v. b Find...Ch. 9.CT - Prob. 3CTCh. 9.CT - Prob. 4CTCh. 9.CT - Prob. 5CTCh. 9.CT - Prob. 6CTCh. 9.CT - Prob. 7CTCh. 9.CT - Prob. 8CTCh. 9.CT - Prob. 9CTCh. 9.CT - Prob. 10CTCh. 9.CT - Prob. 11CTCh. 9.FOM - Prob. 1PCh. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - 1-6 Sketch the vector field F by drawing a diagram...Ch. 9.FOM - Prob. 5PCh. 9.FOM - Prob. 6PCh. 9.FOM - Prob. 7PCh. 9.FOM - Prob. 8PCh. 9.FOM - Prob. 9PCh. 9.FOM - Prob. 10PCh. 9.FOM - Prob. 11PCh. 9.FOM - Prob. 12PCh. 9.FOM - Prob. 13PCh. 9.FOM - Prob. 14PCh. 9.FOM - Prob. 15PCh. 9.FOM - Prob. 16PCh. 9.FOM - Prob. 17PCh. 9.FOM - Prob. 18PCh. 9.FOM - Prob. 19P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Shooting into the Wind Suppose that a projectile is fired into a headwind that pushes it back so as to reduce its horizontal speed by a constant amount . Find parametric equations for the path of the projectile.arrow_forwardCalculus III. Please ans thank you for your help! Step by step would be greatarrow_forwardFind parametric equations for the line. (Use the parameter t.) the line through the points (-5, 2, 5) and (1, 5, -6) (x(t), y(t), z(t)) - ( = Find the symmetric equations. O 1 + x = -5 + y = -6 - 11z 2 O 2x 5 = y - 1: = - - O x 1 = 2y - 2 = z + 6 1 x + 6 -11 x + 5 6 = = 2y - 2 y - 3 2 = Z + 6 -11 = Z- 1 Z-5 -11arrow_forward
- Find parametric equations for the line. (Use the parameter t.) The line through the points (0,, 1) and (8, 1, -7) (x(t), y(t), z(t)) = ( ])- Find the symmetric equations. X - 8 = 2y - 2 = 2 + 7 8 -8 O x - 8 = 2y – 2 = z + 7 O 2x – 2 = Y- 8 8 z + 7 -8 O 8 + 8x = 1 + L = -7 - 8z O x +7 = 2y - 2 = Z - 8 -8arrow_forwardFind parametric equations for the line. (Use the parameter t.) the line through the points (14, 3, -15) and (-8, 3, 12) z(t) = ( [ (x(t), y(t), z(t)) Find the symmetric equations. z + 14 -22 O x + 15 = Oy + 8 = x 14 -22 = y - 3 0 Z - 12 27 = O x 22 = y = Z + 15 27 x - 3 y + 8 3 14 X = -8 14 = 7 = y = 3 z + 15 27 Z 12 -15arrow_forwardr1 : A = (3,2,4) m = i + j + k r2 : A = (2,3,1) B = (4,4,1) (a) Create Vector and Parametric forms of the equations for lines r1 and r2(b) Find the point of intersection for the two lines(c) Find the size of the angle between the two linesarrow_forward
- Vector and Parametric Equations of a Line in 2D & 3D MCV4U May 25, 2022 Answer each question on a seperate sheet of paper providing full solutions. Highlight, bold, encircle or otherwise make clear and distinct your final answer. Show all of your work. Please upload your solutions to this assignment in ONE document.. 1. Find the x and y-intercepts of these lines: a. r= (3,1) + (-3,5), ter b. x = 6 + 2s and y = 3 - 2s, SERarrow_forward1. Write parametric equations AND a vector equation to describe a line that passes through the points (3,-2, 0) and (-1,0,7). Parametric equations: = y(t) = = Vector equation: r(t) = For the line that you found above in problem 1, find the coordinates of the point where that line intersects the plane x + y - 4z=-74. Coordinates of the intersection point: Narrow_forwardExtended Answer Question 1 (a) Let A = (2, 0, -1), B = (0, 4, -1) and C= (1, 2, 0) be points in R³. (i) Find a general form of the equation for the plane P containing A, B and C. (ii) Find parametric equations for the line that passes through B and is parallel to the vector AC. (b) Prove that for all vectors v and w in R", ||vw||² = ||v||² + ||w||² -2(vw) At each step in your proof, you should name or state the property of the dot product that you are using. (c) Now let v and w be vectors in R3 and suppose that ||v|| = 4, ||w|| = 5 and w|| = 7. (i) Use the result of part (b) to compute v . w. (ii) Use the value of v w you found in part (c)(i) to compute ||vxw|. Give your answer as an exact value.arrow_forward
- Find a vector equation and parametric equations for the line. (Use the parameter t.) the line through the point (7, 0, −4) and parallel to the line x = 4 − 4t, y = −1 + 2t, z = 6 + 9t r(t)= x(t), y(t), z(t) =arrow_forwardFind parametric equations for the line. (Use the parameter t.) The line through (-8, 4, 5) and parallel to the line x = y = z + 1 2 (x(t), y(t), z(t)) = Find the symmetric equations. x + 8 - Y- 4 = z - 5 2 3 x + 8 y + 4 = z + 5 3 Y = z - 5 2 X = L = z + 5 %3D 2 3 X - 8 y + 4 = z + 5 3. 2.arrow_forwardFind parametric equations of the line through Po(xo, yo, Zo) parallel to v. 4 (а) Ро(3, 4, —2), v %3D -5 2 -27 (b) Ро(3, 2, 4), v %3D []arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
03 - The Cartesian coordinate system; Author: Technion;https://www.youtube.com/watch?v=hOgKEplCx5E;License: Standard YouTube License, CC-BY
What is the Cartesian Coordinate System? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=mgx0kT5UbKk;License: Standard YouTube License, CC-BY