(a)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
Temperature Changes:
Heat is one of the product in exothermic reaction and heat is used up in endothermic reaction.
Consider an exothermic reaction;
If heat is added up, then the reaction will shift to left so that the amount of heat will decrease.
Lowering the temperature will make the reaction to shift towards right.
Consider an endothermic reaction;
Increase in temperature will shift the reaction towards right.
If heat is added up, then the reaction will shift towards right.
(b)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
(c)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress
Concentration Changes:
Addition of reactant or product or removal of reactant or product from a system at equilibrium will affects the equilibrium. If some reactant is added to a system at equilibrium, then the equilibrium will shifts to the product side, so that the added reactant get consumed. If product is added then the equilibrium will shift towards left side.
Example:
If
If
If
(d)
Interpretation:
For the reaction
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
- Experiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forward
- The decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forwardDon't used hand raitingarrow_forwardCS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forward
- CS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forwardThe following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forwardControl Chart Drawing Assignment The table below provides the number of alignment errors observed during the final inspection of a certain model of airplane. Calculate the central, upper, and lower control limits for the c-chart and draw the chart precisely on the graph sheet provided (based on 3-sigma limits). Your chart should include a line for each of the control limits (UCL, CL, and LCL) and the points for each observation. Number the x-axis 1 through 25 and evenly space the numbering for the y-axis. Connect the points by drawing a line as well. Label each line drawn. Airplane Number Number of alignment errors 201 7 202 6 203 6 204 7 205 4 206 7 207 8 208 12 209 9 210 9 211 8 212 5 213 5 214 9 215 8 216 15 217 6 218 4 219 13 220 7 221 8 222 15 223 6 224 6 225 10arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning