Conceptual Physical Science (6th Edition)
6th Edition
ISBN: 9780134060491
Author: Paul G. Hewitt, John A. Suchocki, Leslie A. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 98DQ
A beam of high-energy protons emerges from a cyclotron. Discuss the magnetic field associated with these high-energy protons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the mass of a 1.6nC charge that has a trajectory with a radius of 1.8 um when it moves at 1.2(10)4 m/s perpendicular to a magnetic field whose strength is 0.50 T? (n = 10-9, u = 10-6)
Which of the following property of a proton can change while it moves freely in a magnetic field? (There may be more than one correct answer.)(a) mass (b) speed (c) velocity (d) momentum
How strong would a magnetic field need to be in order to make a particle with a mass of 4*10^-11 kg and a charge of 8nC move in a circular path with a speed of 400ms and a radius of 0.5 m?
Chapter 9 Solutions
Conceptual Physical Science (6th Edition)
Ch. 9 - How does the range of refrigerator magnets differ...Ch. 9 - Prob. 2RCQCh. 9 - Prob. 3RCQCh. 9 - Prob. 4RCQCh. 9 - What two kinds of motion are exhibited by...Ch. 9 - What is a magnetic domain?Ch. 9 - Why is iron magnetic and wood not magnetic?.Ch. 9 - Prob. 8RCQCh. 9 - What happens to the direction of the magnetic...Ch. 9 - Why is the magnetic field strength inside a...
Ch. 9 - How is the strength of the magnetic field in a...Ch. 9 - In what direction relative to a magnetic field...Ch. 9 - What effect does Earths magnetic field have on the...Ch. 9 - What relative direction between a magnetic field...Ch. 9 - Prob. 15RCQCh. 9 - What is a galvanometer called when it is...Ch. 9 - Is it correct to say that an electric motor is a...Ch. 9 - What important discovery did physicists Michael...Ch. 9 - State Faradays law.Ch. 9 - What are the three ways in which voltage can be...Ch. 9 - How does the frequency of induced voltage compare...Ch. 9 - What are the basic differences and similarities...Ch. 9 - Is the current that is produced by a common...Ch. 9 - What commonly supplies the energy input to a...Ch. 9 - Is it correct to say that a generator produces...Ch. 9 - Is it correct to say that a transformer boosts...Ch. 9 - Which of these does a transformer change: voltage,...Ch. 9 - What is induced by the rapid alternation of a...Ch. 9 - What is induced by the rapid alternation of an...Ch. 9 - What important connection did Maxwell discover...Ch. 9 - PLUG AND CHUG (FORMULA FAMILIARIZATION)...Ch. 9 - PLUG AND CHUG (FORMULA FAMILIARIZATION)...Ch. 9 - A video game console requires 6 V to operate...Ch. 9 - A model electric train requires 6 V to operate....Ch. 9 - A transformer for a laptop computer converts a...Ch. 9 - Show that if the output current for the...Ch. 9 - A transformer has an input of 6 V and an output of...Ch. 9 - An ideal transformer has 50 turns in its primary...Ch. 9 - Neon signs require about 12,000 Y for their...Ch. 9 - A power of 100 kW (105W) is delivered to the other...Ch. 9 - Bar magnets are moved into the wire coils in...Ch. 9 - Each of the transformers shown below powered with...Ch. 9 - Many dry cereals are fortified with iron, which is...Ch. 9 - If you place a chunk of iron near the north pole...Ch. 9 - How do the magnetic poles of refrigerator magnets...Ch. 9 - Prob. 50ECh. 9 - What kind of force field surrounds a stationary...Ch. 9 - Prob. 52ECh. 9 - All atoms have moving electric charges. Why, they...Ch. 9 - Will either pole of a magnet attract a paper clip?...Ch. 9 - A friend tells you that aluminum lies beneath the...Ch. 9 - Magnet A has twice the magnetic field strength of...Ch. 9 - Prob. 57ECh. 9 - To make a compass point an ordinary iron nail...Ch. 9 - Nails sticking to a magnet is understandable. But...Ch. 9 - When steel naval ships are built, the location of...Ch. 9 - How do force field lines for gravitation about a...Ch. 9 - Can an electron at rest in a magnetic field be set...Ch. 9 - When a current-carrying wire is placed in a strong...Ch. 9 - Two charged particles are projected into a...Ch. 9 - In Figure 9.17, we see a magnet exerting a force...Ch. 9 - Residents of northern Canada are bombarded by more...Ch. 9 - When doing spacewalks, why do astronauts keep to...Ch. 9 - What changes in cosmic-ray intensity at Earths...Ch. 9 - Prob. 69ECh. 9 - Historically, replacing dirt roads with paved...Ch. 9 - A common pickup for on electric guitar consists of...Ch. 9 - When Tim pushes the wire between the poles of the...Ch. 9 - At the airport security area you walk through a...Ch. 9 - If your metal car moves over a wide, closed loop...Ch. 9 - Two separate but similar coils of wire are mounted...Ch. 9 - Why will more voltage be induced with the...Ch. 9 - Why is a generator armature harder to rotate when...Ch. 9 - Does a cyclist coast farther if the headlamp...Ch. 9 - How do the input and output parts of a generator...Ch. 9 - Your friend says that if you crank the shaft of a...Ch. 9 - Correct the statement that a generator produces...Ch. 9 - Discuss what is wrong with the following scheme:...Ch. 9 - What is wrong with the statement that a very...Ch. 9 - Why will a transformer not work in a dc circuit?Ch. 9 - What is the principal difference between a step-up...Ch. 9 - In what sense can a transformer be viewed as an...Ch. 9 - Can an efficient transformer step up energy?...Ch. 9 - A friend says that changing electric and magnetic...Ch. 9 - Would electromagnetic waves exist if changing...Ch. 9 - Your physics instructor drops a magnet through a...Ch. 9 - This exercise is similar to the previous one. Why...Ch. 9 - Discuss why a motor also tends to act as a...Ch. 9 - Both the English physicist Michael Faraday and the...Ch. 9 - One method for making a compass is to stick a...Ch. 9 - Your lab partner says, An electron always...Ch. 9 - In a mass spectrometer, ions are directed into a...Ch. 9 - A cyclotron is a device for accelerating charged...Ch. 9 - A beam of high-energy protons emerges from a...Ch. 9 - A magnetic field can deflect a beam of electrons,...Ch. 9 - When Fred Cauthen releases the sheet of copper,...Ch. 9 - A piece of plastic tape coated with iron oxide is...Ch. 9 - If you place a metal ring in a region where a...Ch. 9 - How could a light bulb near an electromagnet, but...Ch. 9 - Why can a hum usually be heard when a transformer...Ch. 9 - Prob. 105DQCh. 9 - A magician places an aluminum ring on a table,...Ch. 9 - Do a pair of parallel current-carrying wires exert...Ch. 9 - Choose the BEST way to complete the statement. 1....Ch. 9 - Surrounding moving electric charges are (a)...Ch. 9 - Prob. 3RATCh. 9 - A magnetic force acting on a beam of electrons can...Ch. 9 - When you move a bar magnet to and fro, first...Ch. 9 - The principle underlying the operation of an...Ch. 9 - The essential physics concept in the operation of...Ch. 9 - A transformer works in accordance with (a)...Ch. 9 - A step-up transformer in an electric circuit can...Ch. 9 - Prob. 10RAT
Additional Science Textbook Solutions
Find more solutions based on key concepts
The speed of the kinetic energy of a particle, when particle twice its Newtonian value.
College Physics: A Strategic Approach (3rd Edition)
Write each number in scientific notation.
3. 2650
Applied Physics (11th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
26.3-26.6 Simultaneity, Time Dilation, Length Contraction, and Spacetime Diagrams
14. * Effect of light speed o...
College Physics
Q23.2 The potential (relative to a point at infinity) midway between two charges of equal magnitude and opposit...
University Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is the kinetic energy of the protons when they are ejected from the cyclotron? (b) What Is this energy in MeV? (c) Through what potential difference would a proton have to be accelerated to acquire this kinetic energy? (d) What is the period of tire voltage source used to accelerate the piotons? (e) Repeat tire calculations for alpha-particles.arrow_forwardA proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the magnetic field is doubled, what happens to the precessional frequency?arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- An electron is accelerated through 2.40 103 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this particle experiences?arrow_forwardAn electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forward, A proton, deuteron, and an alpha-particle ae all accelerated from rest through the same potential difference. They then enter the same magnetic field, moving perpendicular to it. Compute the ratios of the radii of their circular paths. Assume that md= 2wmp and ma= 4mp.arrow_forward
- An alpha-particle ( m=6.641027kg , q=3.21019C ) travels in a circular path of radius 25 cm in a uniform magnetic field of magnitude 1.5 T. (a) What is the speed of the particle? (b) What is the kinetic energy in electron-volts? (c) Through what potential difference must the particle be accelerated in order to give it this kinetic energy?arrow_forwardA spacecraft is in 4 circular orbit of radius equal to 3.0 104 km around a 2.0 1030 kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0 102 T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counter-clockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.arrow_forwardThe picture tube in an old black-and-white television uses magnetic deflection coils rather than electric deflection plates. Suppose an electron beam is accelerated through a 50.0-kV potential difference and then through a region of uniform magnetic field 1.00 cm wide. The screen is located 10.0 cm from the center of the coils and is 50.0 cm wide. When the field is turned off, the electron beam hits the center of the screen. Ignoring relativistic corrections, what field magnitude is necessary to deflect the beam to the side of the screen?arrow_forward
- Cosmic rays are high-energy charged particles produced by astronomical objects. Many of the cosmic rays that make their way to the Earth are trapped by the Earths magnetic field and never reach the surface. These trapped cosmic rays are found in the Van Allen beltsdonut-shaped zones over the Earths equator (Fig. 30.34). These cosmic rays are mostly protons with energies of about 30 MeV. The inset in the figure shows a cosmic ray proton as it is about to enter the Earths magnetic field. The cosmic rays velocity is initially perpendicular to the field. Three students discuss what happens to the incoming cosmic ray. Decide which student or students are correct. Figure 30.34 The Van Allen belts are donut-shaped zones of trapped cosmic rays above the Earths surface. Inset: What happens to this cosmic ray as it enters the Earths magnetic field? Shannon: The velocity is perpendicular to the magnetic field, so the cosmic ray just passes through the field and hits the Earths atmosphere. Avi: What you are saying is that the magnetic field exerts no force on the cosmic ray. Actually, it exerts a huge force because the velocity is perpendicular to the magnetic field. The force will be into the page. Cameron: Avi is right. The cosmic ray proton is going to feel a huge magnetic force. Because it is positively charged, it will be pushed upward along the magnetic field lines. Shannon: I never said the force was zero. There is a force, but the force is perpendicular to the magnetic field lines. In this case, thats to the lefttoward the Earth. Avi: The force is perpendicular to the magnetic field, but it also has to be perpendicular to the velocity. Because B and v are both in the plane of the page, the force must be perpendicular to the page.arrow_forward(a) Viewers of Star Trek have heard of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy swore is to store antimatter charged particles in a vacuum chamber, circulating in a magnetic field, and then exact them as needed Antimatter annihilates normal matter, producing pure energy. What strength magnetic field is needed to hold antiprotons, moving at 5.0 × l0 m/s in a circular path 2.00 m in radius? Antiprotons have the same mass as protons but the opposite (negative) charge. (b) Is this field strength obtainable with today’s technology or is it a futuristic possibility?arrow_forwardA proton and a helium nucleus (consisting of two protons and two neutrons) pass through a velocity selector and into a mass spectrometer. The radius of the protons circular path is rp. Find an expression for the radius r of the helium nucleuss path in terms of rp. (You may assume the mass of a proton is roughly equal to the mass of a neutron, and the helium nucleus has the same speed as the proton.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY