
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 73AP
, A proton, deuteron, and an alpha-particle ae all accelerated from rest through the same potential difference. They then enter the same magnetic field, moving perpendicular to it. Compute the ratios of the radii of their circular paths. Assume that md= 2wmp and ma= 4mp.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls will upvote
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 11 Solutions
University Physics Volume 2
Ch. 11 - Check Your Understanding Repeat the previous...Ch. 11 - Check Your Understanding A uniform magnetic field...Ch. 11 - Check Your Understanding A straight, flexible...Ch. 11 - Check Your Understanding In what orientation would...Ch. 11 - Check Your Understanding A Hall people consists of...Ch. 11 - Check Your Understanding A cyclotron is to be...Ch. 11 - Discuss the similarities and differences between...Ch. 11 - (a) Is it possible for the magnetic force on a...Ch. 11 - At a given instant, an electron and a proton are...Ch. 11 - Does increasing the magnitude of a uniform...
Ch. 11 - An electron passes through a magnetic field...Ch. 11 - If a charged particle moves in a straight line,...Ch. 11 - How could you determine which pole of an...Ch. 11 - Describe the error that results from accidently...Ch. 11 - Considering the magnetic force law, are the...Ch. 11 - Why can a nearby magnet distort a cathode ray tube...Ch. 11 - A magnetic field exerts a force on the moving...Ch. 11 - There are regions where the magnetic field of...Ch. 11 - Hall potentials are much larger for poor...Ch. 11 - Describe the primary function of the electric...Ch. 11 - What is the direction of the magnetic force on a...Ch. 11 - Repeat previous exercise for a negative charge.Ch. 11 - What is the direction of the velocity of a...Ch. 11 - Repeat previous exercise for a positive charge.Ch. 11 - What is the direction of the magnetic field that...Ch. 11 - Repeat previous exercise for a negative charge.Ch. 11 - (a) Aircraft sometimes acquire small static...Ch. 11 - (a) A cosmic ray proton moving toward Earth at...Ch. 11 - An electron moving at 4.00103 m/s in a 1.25-T...Ch. 11 - (a) A physicist performing a sensitive measurement...Ch. 11 - A cosmic-ray electron moves at 7.5 × 106 m/sinches...Ch. 11 - (a) Viewers of Star Trek have heard of an...Ch. 11 - (a) An oxygen-16 ion with a mass of 2.661026 kg...Ch. 11 - An electron in a TV CRT moves with a speed of...Ch. 11 - (a) At what speed will a proton move in a circular...Ch. 11 - (a) What voltage will accelerate electrons to a...Ch. 11 - An alpha-particle ( m=6.641027kg , q=3.21019C )...Ch. 11 - A particle of charge q and mass m is accelerated...Ch. 11 - What is the direction of the magnetic force on the...Ch. 11 - What is the direction of a current that...Ch. 11 - What is the direction of the magnetic field that...Ch. 11 - (a) What is the force per meter on a lightning...Ch. 11 - (a) A dc power line for a light-rail system caries...Ch. 11 - A wire carrying a 30.0-A current passes between...Ch. 11 - (a) By how many percent is the torque of a motor...Ch. 11 - (a) What is the maximum torque on a 150-tum square...Ch. 11 - Find the current through a loop needed to create a...Ch. 11 - Calculate the magnetic field strength needed on a...Ch. 11 - Since the equation for torque on a...Ch. 11 - , (a) At what angle 0 is tlie torque on a current...Ch. 11 - A proton has a magnetic field due to its spin. The...Ch. 11 - (a) A 200-turn circular loop of radius SO.0 cm is...Ch. 11 - Repeat the previous problem, but with the loop...Ch. 11 - A strip of copper is placed in a uniform magnetic...Ch. 11 - The cross-sectional dimensions of the copper strip...Ch. 11 - The magnitudes of the electric and magnetic fields...Ch. 11 - A charged particle moves through a velocity...Ch. 11 - A Hall probe gives a reading of 1.5V for a current...Ch. 11 - A physicist is designing a cyclotron to accelerate...Ch. 11 - The strengths of the fields in the velocity...Ch. 11 - The magnetic field in a cyclotron is 1.25 T, and...Ch. 11 - A mass spectrometer is being used to separate...Ch. 11 - (a) Triply charged uranium-235 and uranium-238...Ch. 11 - Calculate the magnetic force on a hypothetical...Ch. 11 - Repeat the previous problem with a new magnetic...Ch. 11 - An electron is projected into a uniform magnetic...Ch. 11 - The mass and chaise of a water droplet are 1.0104g...Ch. 11 - Four different proton velocities are given. For...Ch. 11 - An electron of kinetic energy 2000 eV passes...Ch. 11 - An alpha-particle (m=6.641027kg,q=3.21019C) moving...Ch. 11 - An electron moving with a velocity...Ch. 11 - At a particular instant an electron is traveling...Ch. 11 - Repeat the calculations of the previous problem...Ch. 11 - What magnetic field is required in order to...Ch. 11 - An electron and a proton move with the same speed...Ch. 11 - A proton and an alpha-particle have the same...Ch. 11 - A singly charged ion takes 2.0 × 10-3 s to...Ch. 11 - A particle moving downward at a speed of 6.0106...Ch. 11 - , A proton, deuteron, and an alpha-particle ae all...Ch. 11 - A singly charged ion is moving in a uniform...Ch. 11 - Two particles have the same linear momentum, but...Ch. 11 - A uniform magnetic field of magnitude is directed...Ch. 11 - An electron moving along the +x -axis at 5.0106m/s...Ch. 11 - (a) A 0.750-m-long section of cable carrying...Ch. 11 - (a)What is the angle between a wire carrying an...Ch. 11 - A 1.0-rn-long segment of wire lies along the...Ch. 11 - A 5.0-m section of a long, straight wire carries a...Ch. 11 - An electromagnet produces a magnetic field of...Ch. 11 - The current loop shown in the accompanying figure...Ch. 11 - A circular coil of radius 5.0 cm is wound with...Ch. 11 - Acircularcoiofwireofradius5.Ocmhas2Otums and...Ch. 11 - A current-carrying coil in a magnetic field...Ch. 11 - A 40-cm by 6.0-cm rectangular current loop carries...Ch. 11 - A circular coil with 200 turns Las a radius of 2.0...Ch. 11 - The current through a circular wire loop of radius...Ch. 11 - A wire of length 1.0 m is wound into a single-turn...Ch. 11 - Consider an electron rotating in a circular orbit...Ch. 11 - The Hall effect is to be used to find the sign of...Ch. 11 - The density of charge carriers far copper is...Ch. 11 - The Hall effect is to be used to find the density...Ch. 11 - Show tliat the Hall voltage across wires made of...Ch. 11 - A velocity selector in a mass spectrometer uses a...Ch. 11 - Find the radius of curvature of the path of a...Ch. 11 - Unreasonable results To construct a non-mechanical...Ch. 11 - Unreasonable results A charged particle having...Ch. 11 - Unreasonable results An inventor wants to generate...Ch. 11 - Unreasonable results Frustrated by the small Hall...Ch. 11 - A particle of charge +q and mass m moves with...Ch. 11 - A proton of speed v=6105m/s enters a region of...Ch. 11 - A particle’s path is bent when it passes through a...Ch. 11 - In a region a non-uniform magnetic field exists...Ch. 11 - A copper rod of mass in and length L is hung from...Ch. 11 - The accompanied figure shows an arrangement for...Ch. 11 - A wire ismade into a circular shape of radius R...Ch. 11 - A long-rigid wire lies along the x-axis and cairns...Ch. 11 - A circular loop of wire of area 10 cm2 carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Compare and contrast the carbon, sulfur, and nitrogen cycles in terms of the physiologies of the organisms that...
Brock Biology of Microorganisms (15th Edition)
5.4 Genes E and H are syntenic in an experimental organism with the genotype . Assume
that during each meiosis,...
Genetic Analysis: An Integrated Approach (3rd Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY