University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 8CQ
Describe the error that results from accidently using your left rather than your right hand when determining the direction of a magnetic force.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
University Physics Volume 2
Ch. 11 - Check Your Understanding Repeat the previous...Ch. 11 - Check Your Understanding A uniform magnetic field...Ch. 11 - Check Your Understanding A straight, flexible...Ch. 11 - Check Your Understanding In what orientation would...Ch. 11 - Check Your Understanding A Hall people consists of...Ch. 11 - Check Your Understanding A cyclotron is to be...Ch. 11 - Discuss the similarities and differences between...Ch. 11 - (a) Is it possible for the magnetic force on a...Ch. 11 - At a given instant, an electron and a proton are...Ch. 11 - Does increasing the magnitude of a uniform...
Ch. 11 - An electron passes through a magnetic field...Ch. 11 - If a charged particle moves in a straight line,...Ch. 11 - How could you determine which pole of an...Ch. 11 - Describe the error that results from accidently...Ch. 11 - Considering the magnetic force law, are the...Ch. 11 - Why can a nearby magnet distort a cathode ray tube...Ch. 11 - A magnetic field exerts a force on the moving...Ch. 11 - There are regions where the magnetic field of...Ch. 11 - Hall potentials are much larger for poor...Ch. 11 - Describe the primary function of the electric...Ch. 11 - What is the direction of the magnetic force on a...Ch. 11 - Repeat previous exercise for a negative charge.Ch. 11 - What is the direction of the velocity of a...Ch. 11 - Repeat previous exercise for a positive charge.Ch. 11 - What is the direction of the magnetic field that...Ch. 11 - Repeat previous exercise for a negative charge.Ch. 11 - (a) Aircraft sometimes acquire small static...Ch. 11 - (a) A cosmic ray proton moving toward Earth at...Ch. 11 - An electron moving at 4.00103 m/s in a 1.25-T...Ch. 11 - (a) A physicist performing a sensitive measurement...Ch. 11 - A cosmic-ray electron moves at 7.5 × 106 m/sinches...Ch. 11 - (a) Viewers of Star Trek have heard of an...Ch. 11 - (a) An oxygen-16 ion with a mass of 2.661026 kg...Ch. 11 - An electron in a TV CRT moves with a speed of...Ch. 11 - (a) At what speed will a proton move in a circular...Ch. 11 - (a) What voltage will accelerate electrons to a...Ch. 11 - An alpha-particle ( m=6.641027kg , q=3.21019C )...Ch. 11 - A particle of charge q and mass m is accelerated...Ch. 11 - What is the direction of the magnetic force on the...Ch. 11 - What is the direction of a current that...Ch. 11 - What is the direction of the magnetic field that...Ch. 11 - (a) What is the force per meter on a lightning...Ch. 11 - (a) A dc power line for a light-rail system caries...Ch. 11 - A wire carrying a 30.0-A current passes between...Ch. 11 - (a) By how many percent is the torque of a motor...Ch. 11 - (a) What is the maximum torque on a 150-tum square...Ch. 11 - Find the current through a loop needed to create a...Ch. 11 - Calculate the magnetic field strength needed on a...Ch. 11 - Since the equation for torque on a...Ch. 11 - , (a) At what angle 0 is tlie torque on a current...Ch. 11 - A proton has a magnetic field due to its spin. The...Ch. 11 - (a) A 200-turn circular loop of radius SO.0 cm is...Ch. 11 - Repeat the previous problem, but with the loop...Ch. 11 - A strip of copper is placed in a uniform magnetic...Ch. 11 - The cross-sectional dimensions of the copper strip...Ch. 11 - The magnitudes of the electric and magnetic fields...Ch. 11 - A charged particle moves through a velocity...Ch. 11 - A Hall probe gives a reading of 1.5V for a current...Ch. 11 - A physicist is designing a cyclotron to accelerate...Ch. 11 - The strengths of the fields in the velocity...Ch. 11 - The magnetic field in a cyclotron is 1.25 T, and...Ch. 11 - A mass spectrometer is being used to separate...Ch. 11 - (a) Triply charged uranium-235 and uranium-238...Ch. 11 - Calculate the magnetic force on a hypothetical...Ch. 11 - Repeat the previous problem with a new magnetic...Ch. 11 - An electron is projected into a uniform magnetic...Ch. 11 - The mass and chaise of a water droplet are 1.0104g...Ch. 11 - Four different proton velocities are given. For...Ch. 11 - An electron of kinetic energy 2000 eV passes...Ch. 11 - An alpha-particle (m=6.641027kg,q=3.21019C) moving...Ch. 11 - An electron moving with a velocity...Ch. 11 - At a particular instant an electron is traveling...Ch. 11 - Repeat the calculations of the previous problem...Ch. 11 - What magnetic field is required in order to...Ch. 11 - An electron and a proton move with the same speed...Ch. 11 - A proton and an alpha-particle have the same...Ch. 11 - A singly charged ion takes 2.0 × 10-3 s to...Ch. 11 - A particle moving downward at a speed of 6.0106...Ch. 11 - , A proton, deuteron, and an alpha-particle ae all...Ch. 11 - A singly charged ion is moving in a uniform...Ch. 11 - Two particles have the same linear momentum, but...Ch. 11 - A uniform magnetic field of magnitude is directed...Ch. 11 - An electron moving along the +x -axis at 5.0106m/s...Ch. 11 - (a) A 0.750-m-long section of cable carrying...Ch. 11 - (a)What is the angle between a wire carrying an...Ch. 11 - A 1.0-rn-long segment of wire lies along the...Ch. 11 - A 5.0-m section of a long, straight wire carries a...Ch. 11 - An electromagnet produces a magnetic field of...Ch. 11 - The current loop shown in the accompanying figure...Ch. 11 - A circular coil of radius 5.0 cm is wound with...Ch. 11 - Acircularcoiofwireofradius5.Ocmhas2Otums and...Ch. 11 - A current-carrying coil in a magnetic field...Ch. 11 - A 40-cm by 6.0-cm rectangular current loop carries...Ch. 11 - A circular coil with 200 turns Las a radius of 2.0...Ch. 11 - The current through a circular wire loop of radius...Ch. 11 - A wire of length 1.0 m is wound into a single-turn...Ch. 11 - Consider an electron rotating in a circular orbit...Ch. 11 - The Hall effect is to be used to find the sign of...Ch. 11 - The density of charge carriers far copper is...Ch. 11 - The Hall effect is to be used to find the density...Ch. 11 - Show tliat the Hall voltage across wires made of...Ch. 11 - A velocity selector in a mass spectrometer uses a...Ch. 11 - Find the radius of curvature of the path of a...Ch. 11 - Unreasonable results To construct a non-mechanical...Ch. 11 - Unreasonable results A charged particle having...Ch. 11 - Unreasonable results An inventor wants to generate...Ch. 11 - Unreasonable results Frustrated by the small Hall...Ch. 11 - A particle of charge +q and mass m moves with...Ch. 11 - A proton of speed v=6105m/s enters a region of...Ch. 11 - A particle’s path is bent when it passes through a...Ch. 11 - In a region a non-uniform magnetic field exists...Ch. 11 - A copper rod of mass in and length L is hung from...Ch. 11 - The accompanied figure shows an arrangement for...Ch. 11 - A wire ismade into a circular shape of radius R...Ch. 11 - A long-rigid wire lies along the x-axis and cairns...Ch. 11 - A circular loop of wire of area 10 cm2 carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
63. A 100 kg mass suspended from a wire whose unstretched length is 4.00 m is found to stretch the wire by 6.0 ...
College Physics (10th Edition)
High voltage by itself does not produce electric shock. What does?
Conceptual Integrated Science
When an unknown resistance Rxis placed in a Wheatstone bridge, it is possible to balance the bridge by adjustin...
College Physics
Archimedes purportedly used his principle to verify that the kings crown was pure gold by weighing the crown su...
Essential University Physics (3rd Edition)
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east, (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in the field with a speed of 4 x 107 m/s? (b) Compare this force with the weight w of a proton.arrow_forwardAn electromagnet produces a magnetic field of magnitude 1.5 T throughout a cylindrical region of radius 6.0 cm. A straight wire carrying a current of 25 A passes through the field as shown in the accompanying figure. What is the magnetic force on the wire?arrow_forwardConsider the wires described in Problem 63. Find the magnetic force per unit length exerted on wire B.arrow_forward
- Review. A 30.0-g metal hall having net charge Q = 5.00 C is thrown out of a window horizontally north at a speed v = 20.0 m/s. The window is at a height h = 20.0 m above the ground. A uniform, horizontal magnetic field of magnitude B = 0.010 0 T is perpendicular to the plane of the balls trajectory and directed toward the west. (a) Assuming the ball follows the same trajectory as it would in the absence of the magnetic field, find the magnetic force acting on the ball just before it hits the ground. (b) Based on the result of part (a), is it justified for three-significant-digit precision to assume the trajectory is unaffected by the magnetic field? Explain.arrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forwardCan a constant magnetic field set into motion an electron initially at rest? Explain your answer.arrow_forward
- Three long, straight, parallel wires, all carrying 20 A, are positioned as shown in the accompanying figure. What is the magnitude of the magnetic field at the point P?arrow_forwardA wire ismade into a circular shape of radius R and pivoted along a central support.The two ends of the sire are touching a banish that is connected to a &power source. The stricture is between the poles of a magnet such that we can assume there is a uniform magnetic field on the wire. In terms of a coordinate system with origin at the center ofthe ring, magneticfieldisBx=B0,By=Bz= 0. and the ring rotates about the z-axis. Find the torque on the ring siren it is not in the xz-plane.arrow_forwardA packed bundle of 100 long, straight, insulated wires forms a cylinder of radius R = 0.500 cm. If each wire carries 2.00 A, what are (a) the magnitude and (b) the direction of the magnetic force per unit length acting on a wire located 0.200 cm from the center of the bundle? (c) What If? Would a wire on the outer edge of the bundle experience a force greater or smaller than the value calculated in parts (a) and (b)? Give a qualitative argument for your answer.arrow_forward
- The accompanying figure shows a current loop consisting of two concentric circular arcs and two perpendicular radial lines. Determine the magnetic field at point P.arrow_forwardA charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forwardA charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY