Concept explainers
Determine the number of equivalents and milliequivalents in
a.
b.
c.
d.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card
- Calcium carbonate, CaCO3, can be obtained in a very pure state. Standard solutions of calcium ion are usually prepared by dissolving calcium carbonate in acid. What mass of CaCO3 should be taken to prepare 500. mL of 0.0200 M calcium ion solution?arrow_forwardEqual quantities of the hypothetical strong acid HX, weak acid HA, and weak base BZ are added to separate beakers of water, producing the solutions depicted in the drawings. In the drawings, the relative amounts of each substance present in the solution (neglecting the water) are shown. Identify the acid or base that was used to produce each of the solutions (HX, HA, or BZ).arrow_forwardTwo liters of a 1.5 M solution of sodium hydroxide are needed for a laboratory experiment. A stock solution of 5.0 M NaOH is available. How is the desired solution prepared?arrow_forward
- The (aq) designation listed after a solute indicates the process of hydration. Using KBr(aq) and C2H5OH(aq) as your examples, explain the process of hydration for soluble ionic compounds and for soluble covalent compounds.arrow_forwardMatch each name below with the following microscopic pictures of that compound in aqueous solution. a. barium nitrate b. sodium chloride c. potassium carbonate d. magnesium sulfate Which picture best represents HNO3(aq)? Why arent any of the pictures a good representation of HC2H3O2(aq)?arrow_forwardIdentify the ions that exist in each aqueous solution, and specify the concentration of each ion. (a) 0.25 M(NH4)2SO4 (b) 0.123 M Na2CO3 (c) 0.056 M HNO3arrow_forward
- What volume of 0.250 M HCI is required to neutralize each of the following solutions? a. 25.0 mL of 0.103 M sodium hydroxide, NaOH b. 50.0 mL of 0.00501 M calcium hydroxide, Ca(OH)2 c. 20.0 mL of 0.226 M ammonia, NH3 d. 15.0 mL of 0.0991 M potassium hydroxide, KOHarrow_forwardA 0.500-L sample of H2SO4 solution was analyzed by taking a 100.0-mL aliquot and adding 50.0 mL of 0.213 M NaOH. After the reaction occurred, an excess of OH ions remained in the solution. The excess base required 13.21 mL of 0.103 M HCl for neutralization. Calculate the molarity of the original sample of H2SO4. Sulfuric acid has two acidic hydrogens.arrow_forwardWhat is the molar concentration of an H2SO4 solution if a 50.0-mL sample requires 9.65 mL of a 1.33 M solution of NaOH to reach the equivalence point?arrow_forward
- Carminic acid, a naturally occurring red pigment extracted from the cochineal insect, contains only carbon, hydrogen, and oxygen. It was commonly used as a dye in the first half of the nineteenth century. It is 53.66% C and 4.09% H by mass. A titration required 18.02 mL of 0.0406 M NaOH to neutralize 0.3602 g carminic acid. Assuming that there is only one acidic hydrogen per molecule, what is the molecular formula of carminic acid?arrow_forwardChromium(III) chloride forms many compounds with ammonia. To find the formula of one of these compounds, you titrate the NH3 in the compound with standardized acid. Cr(NH3)xCl3(aq) + x HCl(aq) x NH4+(aq) + Cr3+(aq) + (x + 3) Cl(aq) Assume that 24.26 mL of 1.500 M HCl is used to titrate 1.580 g of Cr(NH3)xCl3. What is the value of x?arrow_forwardWorking with Concentration (Molarity Concepts) Note: You should be able to answer all of the following questions without using a calculator. Part 1: a Both NaCl and MgCl2 are soluble ionic compounds. Write the balanced chemical equations for these two substances dissolving in water. b Consider the pictures below. These pictures represent 1.0-L solutions of 1.0 M NaCl(aq) and 1.0 M MgCl2(aq). The representations of the ions in solution are the correct relative amounts. Water molecules have been omitted for clarity. Correctly label each of the beakers, provide a key to help identify the ions, and give a brief explanation of how you made your assignments. Keeping in mind that the pictures represent the relative amounts of ions in the solution and that the numerical information about these solutions is presented above, answer the following questions c through f. c How many moles of NaCl and MgCl2 are in each beaker? d How many moles of chloride ions are in each beaker? How did you arrive at this answer? e What is the concentration of chloride ions in each beaker? Without using mathematical equations, briefly explain how you obtained your answer. f Explain how it is that the concentrations of chloride ions in these beakers are different even though the concentrations of each substance (compound) are the same. Part 2: Say you were to dump out half of the MgCl2 solution from the beaker above. a What would be the concentration of the MgCl2(aq) and of the chloride ions in the remaining solution? b How many moles of the MgCl2 and of the chloride ions would remain in the beaker? c Explain why the concentration of MgCl2(aq) would not change, whereas the number of moles of MgCl2 would change when solution was removed from the beaker. As part of your answer, you are encouraged to use pictures. Part 3: Consider the beaker containing 1.0 L of the 1.0 M NaCl(aq) solution. You now add 1.0 L of water to this beaker. a What is the concentration of this NaCl(aq) solution? b How many moles of NaCl are present in the 2.0 L of NaCl(aq) solution? c Explain why the concentration of NaCl(aq) does change with the addition of water, whereas the number of moles does not change. Here again, you are encouraged to use pictures to help answer the question.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning