Organic Chemistry: Principles and Mechanisms (Second Edition)
Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9.57P
Interpretation Introduction

(a)

Interpretation:

The stronger of the given pair of nucleophiles in ethanol is to be determined.

Concept introduction:

The strength of a nucleophile depends on several factors. Generally a negatively charged species is a stronger nucleophile than an uncharged species. In a charged nucleophile, the less stable the charge, the higher the strength as a nucleophile. A negative charge is less stable on a relatively less electronegative atom. Therefore, when comparing atoms from the same period, the less electronegative atom (with a negative charge) is a stronger nucleophile. For atoms from the same group, stability of the charge depends on the size of the atom. If the atom bearing the charge is small, the stability is less and strength as a nucleophile is higher. Resonance can stabilize a charge through delocalization over more than one atom, so resonance stabilization of the charge reduces the strength of a nucleophile. The strength also depends, to some extent, on the inductive effect of the groups attached to the carbon that is bonded to the nucleophilic atom. Inductively electron donating groups destabilize the charge and increase the strength of the nucleophile. On the other hand, inductively electron withdrawing groups decrease the strength of a nucleophile.

Protic solvents strongly solvate and stabilize negatively charged species, and therefore, reduce the strength of negatively charged nucleophiles. If the atoms carrying the charge are from the same group, the order of strength is reversed in a protic solvent because the solvation is greater for smaller atoms.

Expert Solution
Check Mark

Answer to Problem 9.57P

The stronger nucleophile of the two is CH3O.

Explanation of Solution

The given pair of nucleophiles is CH3OH and CH3O.

Negatively charged nucleophiles are stronger than corresponding uncharged nucleophiles. Of the two nucleophiles, the second CH3O has a negative charge.

Therefore, CH3O is the stronger nucleophile of the two.

Conclusion

Negatively charged species are stronger nucleophiles than uncharged ones.

Interpretation Introduction

(b)

Interpretation:

The stronger of the given pair of nucleophiles, in ethanol, is to be determined.

Concept introduction:

The strength of a nucleophile depends on several factors. Generally a negatively charged species is a stronger nucleophile than an uncharged species. In the charged nucleophile, the less stable the charge, the higher the strength as a nucleophile. A negative charge is less stable on a relatively less electronegative atom. Therefore, when comparing atoms from the same period, the less electronegative atom (with a negative charge) is a stronger nucleophile. For atoms from the same group, stability of the charge depends on the size of the atom. If the atom bearing the charge is small, the stability is less and strength as a nucleophile is higher. Resonance can stabilize a charge through delocalization over more than one atom, so resonance stabilization of the charge reduces the strength of a nucleophile. The strength also depends, to some extent, on the inductive effect of the groups attached to the carbon that is bonded to the nucleophilic atom. Inductively electron donating groups destabilize the charge and increase the strength of the nucleophile. On the other hand, inductively electron withdrawing groups decrease the strength of a nucleophile.

Protic solvents strongly solvate and stabilize negatively charged species, and therefore, reduce the strength of negatively charged nucleophiles. If the atoms carrying the charge are from the same group, the order of strength is reversed in a protic solvent because the solvation is greater for smaller atoms.

Expert Solution
Check Mark

Answer to Problem 9.57P

The stronger nucleophile of the two is CH3NH2.

Explanation of Solution

The given pair of nucleophiles is CH3OH and CH3NH2.

Both are uncharged species, and the donor atoms in the two are from the same period. In this case, the strength of the nucleophile will depend on the electronegativity of the donor atom. The less electronegative nitrogen atom is better able to donate its lone pair than the more electronegative oxygen atom.

Therefore, the stronger electrophile is CH3NH2.

Conclusion

The strength of a nucleophile increases with decreasing electronegativity of the donor atom.

Interpretation Introduction

(c)

Interpretation:

The stronger of the given pair of nucleophiles in ethanol is to be determined.

Concept introduction:

The strength of a nucleophile depends on several factors. Generally a negatively charged species is a stronger nucleophile than an uncharged species. In the charged nucleophile, the less stable the charge, the higher the strength as a nucleophile. A negative charge is less stable on a relatively less electronegative atom Therefore, when comparing atoms from the same period, the less electronegative atom (with a negative charge) is a stronger nucleophile. For atoms from the same group, stability of the charge depends on the size of the atom. If the atom bearing the charge is small, the stability is less and strength as a nucleophile is higher. Resonance can stabilize a charge through delocalization over more than one atom, so resonance stabilization of the charge reduces the strength of a nucleophile. The strength also depends, to some extent, on the inductive effect of the groups attached to the carbon that is bonded to the nucleophilic atom. Inductively electron donating groups destabilize the charge and increase the strength of the nucleophile. On the other hand, inductively electron withdrawing groups decrease the strength of a nucleophile.

Protic solvents strongly solvate and stabilize negatively charged species, and therefore, reduce the strength of negatively charged nucleophiles. If the atoms carrying the charge are from the same group, the order of strength is reversed in a protic solvent because the solvation is greater for smaller atoms.

Expert Solution
Check Mark

Answer to Problem 9.57P

The stronger nucleophile of the two is

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  1

Explanation of Solution

The given pair of nucleophiles is

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  2

Both species are negatively charged, so the solvation effect of the protic solvent ethanol is expected to be similar.

The donor atom is also the same in both species. The strength as a nucleophile will then depend on the stability of the charge.

In the first species, the charge is resonance stabilized over a total of four atoms.

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  3

There is no such stabilization in the second species.

Therefore, the stronger nucleophile is the second species.

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  4

Conclusion

Resonance stabilization of the charge reduces the strength of a negatively charged nucleophile.

Interpretation Introduction

(d)

Interpretation:

The stronger of the given pair of nucleophiles in ethanol is to be determined.

Concept introduction:

The strength of a nucleophile depends on several factors. Generally a negatively charged species is a stronger nucleophile than an uncharged species. In the charged nucleophile, the less stable the charge, the higher the strength as a nucleophile. A negative charge is less stable on a relatively less electronegative atom. Therefore, when comparing atoms from the same period, the less electronegative atom (with a negative charge) is a stronger nucleophile. For atoms from the same group, stability of the charge depends on the size of the atom. If the atom bearing the charge is small, the stability is less and strength as a nucleophile is higher. Resonance can stabilize a charge through delocalization over more than one atom, so resonance stabilization of the charge reduces the strength of a nucleophile. The strength also depends, to some extent, on the inductive effect of the groups attached to the carbon that is bonded to the nucleophilic atom. Inductively electron donating groups destabilize the charge and increase the strength of the nucleophile. On the other hand, inductively electron withdrawing groups decrease the strength of a nucleophile.

Protic solvents strongly solvate and stabilize negatively charged species, and therefore, reduce the strength of negatively charged nucleophiles. If the atoms carrying the charge are from the same group, the order of strength is reversed in a protic solvent because the solvation is greater for smaller atoms.

Expert Solution
Check Mark

Answer to Problem 9.57P

The stronger nucleophile of the two is

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  5

Explanation of Solution

The given pair of nucleophiles is

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  6

Both are negatively charged nucleophiles with the charge on atoms, S and O, that are from the same group. The sulfur atom is considerably larger than the oxygen atom, and normally would be expected to stabilize the charge better. This would mean that the second nucleophile, with less charge stabilization would be the stronger nucleophile.

However, the solvent in this case, ethanol is protic. It will solvate the smaller oxygen atom much better than the sulfur atom. This solvation will stabilize the second species more than the first one.

Therefore, the stronger nucleophile of the two in ethanol would be

Organic Chemistry: Principles and Mechanisms (Second Edition), Chapter 9, Problem 9.57P , additional homework tip  7

Conclusion

Solvation of negatively charged species by protic solvents can reverse the usual order for nucleophiles containing donor atoms from the same group of the periodic table.

Interpretation Introduction

(e)

Interpretation:

The stronger of the given pair of nucleophiles in ethanol is to be determined.

Concept introduction:

The strength of a nucleophile depends on several factors. Generally a negatively charged species is a stronger nucleophile than an uncharged species. In the charged nucleophile, the less stable the charge, the higher the strength as a nucleophile. A negative charge is less stable on a relatively less electronegative atom. Therefore, when comparing atoms from the same period, the less electronegative atom (with a negative charge) is a stronger nucleophile. For atoms from the same group, stability of the charge depends on the size of the atom. If the atom bearing the charge is small, the stability is less and strength as a nucleophile is higher. Resonance can stabilize a charge through delocalization over more than one atom, so resonance stabilization of the charge reduces the strength of a nucleophile. The strength also depends, to some extent, on the inductive effect of the groups attached to the carbon that is bonded to the nucleophilic atom. Inductively electron donating groups destabilize the charge and increase the strength of the nucleophile. On the other hand, inductively electron withdrawing groups decrease the strength of a nucleophile.

Protic solvents strongly solvate and stabilize negatively charged species, and therefore, reduce the strength of negatively charged nucleophiles. If the atoms carrying the charge are from the same group, the order of strength is reversed in a protic solvent because the solvation is greater for smaller atoms.

Expert Solution
Check Mark

Answer to Problem 9.57P

The stronger nucleophile of the two is CH3Se.

Explanation of Solution

The given pair of nucleophiles is CH3S and CH3Se.

Both are negatively charged species, with donor atoms that carry the charge from the same group. Usually this would mean the species with the smaller donor atom would be the stronger nucleophile. However, the solvent in this case is a protic solvent, ethanol. The smaller sulfur atom will be more strongly solvated than the larger selenium atom. This will reduce the strength of the sulfur containing nucleophile much more than that of the selenium containing nucleophile, thus reversing the usual order.

Therefore, the stronger nucleophile in ethanol is CH3Se.

Conclusion

Solvation of negatively charged species by protic solvents can reverse the usual order for nucleophiles containing donor atoms from the same group of the periodic table.

Interpretation Introduction

(f)

Interpretation:

The stronger of the given pair of nucleophiles in ethanol is to be determined.

Concept introduction:

The strength of a nucleophile depends on several factors. Generally, a negatively charged species is a stronger nucleophile than an uncharged species. In the charged nucleophile, the less stable the charge, the higher the strength as a nucleophile. A negative charge is less stable on a relatively less electronegative atom. Therefore, when comparing atoms from the same period, the less electronegative atom (with a negative charge) is a stronger nucleophile. For atoms from the same group, stability of the charge depends on the size of the atom. If the atom bearing the charge is small, the stability is less and strength as a nucleophile is higher. Resonance can stabilize a charge through delocalization over more than one atom, so resonance stabilization of the charge reduces the strength of a nucleophile. The strength also depends, to some extent, on the inductive effect of the groups attached to the carbon that is bonded to the nucleophilic atom. Inductively electron donating groups destabilize the charge and increase the strength of the nucleophile. On the other hand, inductively electron withdrawing groups decrease the strength of a nucleophile.

Protic solvents strongly solvate and stabilize negatively charged species, and therefore, reduce the strength of negatively charged nucleophiles. If the atoms carrying the charge are from the same group, the order of strength is reversed in a protic solvent because the solvation is greater for smaller atoms.

Expert Solution
Check Mark

Answer to Problem 9.57P

The stronger nucleophile of the two is CH3Se.

Explanation of Solution

The given pair of nucleophiles is CH3Se and Br.

Both are negatively charged species, with the charge on atoms that are from the same period. The sizes of the two atoms are nearly the same, so solvation by the protic solvent is not expected to differ significantly. The strength will depend mostly on the electronegativity of the atom. The less electronegative Se will not stabilize the charge as strongly as the more electronegative Br.

Therefore, the stronger nucleophile of the two is CH3Se.

Conclusion

For nucleophiles containing donor atoms from the same period, lower the electronegativity of the donor atom, stronger is the nucleophile.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Give the structure(s) of the product(s) the reaction below, and be sure to indicate any relative stereochemistry (you can assume that each of the Diels-Alder reactions will proceed with endo selectivity). Draw out relevant enantiomer(s) if they are expected to form. If no reaction is expected to occur under the indicated conditions, then write "no reaction" or NR, and explain why you would expect nothing to occur. If more than one product is formed, please indicate which one will be the major product or if they will be formed in equal amounts. In all cases, equimolar amounts of both components/reagents are present unless indicated otherwise   I'm struggling to see how this reaction will go! I am wondering if it will cycle on itself but I'm not sure how I drew out a decagon but I'm a bit lost
Give the structure(s) of the product(s) for the reactions below, and be sure to indicate any relative stereochemistry (you can assume that each of the Diels-Alder reactions will proceed with endo selectivity). Draw out relevant enantiomer(s) if they are expected to form. If no reaction is expected to occur under the indicated conditions, then write "no reaction" or NR, and explain why you would expect nothing to occur. If more than one product is formed, please indicate which one will be the major product or if they will be formed in equal amounts. In all cases, equimolar amounts of both components/reagents are present unless indicated otherwise .
Calculate the residence time of strontium (Sr2+) in the world ocean, given that the average concentration of strontium in the world’s rivers is approximately 0.87 µmol L-1 (5 pts).

Chapter 9 Solutions

Organic Chemistry: Principles and Mechanisms (Second Edition)

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.32PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.36PCh. 9 - Prob. 9.37PCh. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - Prob. 9.44PCh. 9 - Prob. 9.45PCh. 9 - Prob. 9.46PCh. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - Prob. 9.58PCh. 9 - Prob. 9.59PCh. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.62PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Prob. 9.65PCh. 9 - Prob. 9.66PCh. 9 - Prob. 9.67PCh. 9 - Prob. 9.68PCh. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - Prob. 9.71PCh. 9 - Prob. 9.72PCh. 9 - Prob. 9.73PCh. 9 - Prob. 9.74PCh. 9 - Prob. 9.75PCh. 9 - Prob. 9.76PCh. 9 - Prob. 9.77PCh. 9 - Prob. 9.78PCh. 9 - Prob. 9.79PCh. 9 - Prob. 9.80PCh. 9 - Prob. 9.81PCh. 9 - Prob. 9.82PCh. 9 - Prob. 9.83PCh. 9 - Prob. 9.84PCh. 9 - Prob. 9.1YTCh. 9 - Prob. 9.2YTCh. 9 - Prob. 9.3YTCh. 9 - Prob. 9.4YTCh. 9 - Prob. 9.5YTCh. 9 - Prob. 9.6YTCh. 9 - Prob. 9.7YTCh. 9 - Prob. 9.8YTCh. 9 - Prob. 9.9YTCh. 9 - Prob. 9.10YTCh. 9 - Prob. 9.11YTCh. 9 - Prob. 9.12YTCh. 9 - Prob. 9.13YTCh. 9 - Prob. 9.14YTCh. 9 - Prob. 9.15YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY